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Abstract

This paper models the interdependent mechanisms of corporate fraud and regulation.

Our analyses yield two key insights. First, fraud is a never-ending game of cat and mouse

because the strength of detection optimally matches the severity of fraud in equilibrium.

Second, anti-fraud regulations can tamp down fraud pro tem by sharply decreasing the

most fraudulent firms’ net benefits from continuing fraud. However, concentration of

regulatory resources on these firms allows other firms to be more aggressive. As such,

regulations do not eradicate fraud but synchronize firms’ otherwise idiosyncratic fraud

decisions and lead to fraud waves. Empirical examinations of these insights provide

supporting evidence. These results carry strong policy implications, offering a realistic

understanding of fraud as a permanent risk in the financial markets and the limited

efficacy of anti-fraud regulations.
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1 Introduction

From the original Ponzi scheme of 1920 to the collapse of Enron in 2001, Lehman Brothers

in 2008, and Wirecard in 2020, the history of the financial markets is marred by a continuous

stream of accounting scandals. Billions of dollars were lost as a result of these financial

disasters, which shook investors’ confidence, destroyed companies, and ruined peoples’ lives.

In response, reforms in the regulatory framework of financial reporting often followed, with the

aim of cracking down on fraud. For example, former president George W. Bush characterized

the Sarbanes-Oxley Act of 2002 as “the most far-reaching reforms of American business

practice” that include “tough new provisions to deter and punish corporate and accounting

fraud and corruption...” The Dodd-Frank Act of 2010 further expanded the efforts to fight

fraud. The Act, via its Whistleblower Program, empowered the Securities and Exchange

Commission (SEC) to reward whistleblowers in unprecedented ways.

But, what if fraud is a persistent feature of the financial markets? If financial reporting

failure is a permanent risk, then to what extent can anti-fraud regulations achieve their stated

goals of cracking down on fraud? This study investigates these two questions by probing the

interdependent mechanisms of corporate accounting fraud and anti-fraud regulation.

We begin by building a multi-period model featuring a representative firm and a regulator.

At the end of each period, the firm manager issues a potentially biased earnings report to the

market after privately observing the firm’s economic earnings (or fundamental cash flows).

Based on the report, the market forms a rational expectation of the firm’s current and future

economic earnings and estimates firm value. The regulator utilizes a detection technology to

inspect the firm’s report. With a certain probability, the technology uncovers the fraudulent

amount of the report and reveals it to the market.

The manager and the regulator each solve a maximization problem. The manager chooses

the fraud amount in each period to maximize firm value, by weighing his marginal bene-

fit(hereafter MB) and marginal cost (hereafter MC) of committing fraud. The MC is linked

to detection likelihood. The MB depends on how much the market values the reported earn-

ings and increases with the amount of fraud built to date. An increase in cumulative fraud
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adds information uncertainty about the firm both in the current period and in future periods,

which in turn boosts the value of the new earnings report and potential return from inflating

the report. The regulator decides on the amount of resources spent on a detection technol-

ogy. In doing so, she seeks to maximize the informativeness of the firm’s report, by weighing

her MB and MC of detecting fraud. The MC is also linked detection likelihood, as a higher

likelihood calls for a greater amount of regulatory resources. The MB also increases with the

amount of fraud built to date, as it depends on the extent to which detection helps investors

unravel fraud, which then allows them to base the conjectured firm value on true economic

earnings rather than inflated earnings; catching the firm with a higher level of cumulative

fraud clears more information uncertainty both in the current period and in future periods.

Analyses of this single-firm model begin to tell why fraud may never cease to exist. Al-

though the manager and the regulator each solve a maximization problem independently, the

two problems are intertwined with their MBs and MCs essentially co-moving. In equilibrium,

the regulator chooses the optimal level of detection likelihood (by spending the corresponding

amount of resources on detection), anticipating the optimal level of fraud committed by the

manager, and vice versa. If the regulator anticipates a low level of fraud built up in the firm,

then she would spend little on detection. The manager thus continues to commit fraud as the

MB likely outweighs the MC. As fraud gradually builds up, a higher information uncertainty

further incentivizes the manager to commit fraud. At the same time, the regulator would

increase spending on detection. The two effects go hand-in-hand, simultaneously increasing

the manager’s MB and MC. When fraud reaches a critical level, the regulator would concen-

trate resources on the firm and the MC of continuing fraud eventually dominates the MB.

Upon detection, fraud is cleared in the firm, and the cycle repeats. This rationale explains

the time-series persistence of fraud within firms.

Analyses of an expanded, three-firm model make a separate case for everlasting fraud. H-,

M-, and L-firm represent the firm with a high, medium, and low level of cumulative fraud,

respectively. As in the single-firm model, the strength of detection matches the severity of

fraud in equilibrium. Hence, with three firms in play, the regulator rationally allocates most

resources towards H-firm. Ironically, M- and L-firms may factor in the regulator’s decision
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and become more aggressive because their actions would be better masked until H-firm is

caught (upon which M-firm becomes next target in line). This rationale explains the cross-

sectional persistence of fraud across firms.

The question then arises is whether anti-fraud regulations can still achieve their stated

goals of cracking down on fraud. Analyses of the multi-firm model help evaluate the efficacy

of such regulations. Indeed, anti-fraud regulations are able to tamp down fraud by effectively

lowering H-firm’s net benefits from continuing fraud. Before detection, concentration of reg-

ulatory resources on H-firm greatly increases its MC of committing fraud. Upon detection,

the MB becomes minuscule because a sharply declined uncertainty renders the firm’s earn-

ings report less useful and fraudulent reporting less valuable. Yet, the rational allocation

of regulatory resources towards the more fraudulent firms may imply less scrutiny of less

fraudulent firms, allowing the latter’s fraudulent behavior to go undetected and their level of

fraud to catch up—a side effect discussed earlier. As such, despite the “cracking-down” on

H-firm, anti-fraud regulations do not eradicate fraud. Rather, they synchronize firms’ fraud

decisions, which may otherwise be idiosyncratic, and induce corporate fraud waves over time.

We take these insights to data. In our multi-firm model, firms are set apart by their

level of cumulative fraud. Cumulative fraud directly impacts firms’ information uncertainty

and we use implied volatility of standardized options to capture fraud-induced information

uncertainty. This proxy fits well with the theoretical construct that we intend to capture

because it reflects the variance of the market’s estimate about a firm’s value conditional on

all available information.1 Relying on this proxy, we conduct three analyses.

First, we link implied volatility to the MB of committing fraud. This analysis is a joint

test of the model prediction that a rising level of cumulative fraud motivates fraud by exacer-

bating information uncertainty and our use of implied volatility as a proxy for fraud-induced

information uncertainty. We find that analysts’ revision of earnings estimates for the next

quarter is more responsive to unexpected earnings of the current quarter when implied volatil-

ity is higher. This finding is consistent with information uncertainty boosting the value of

accounting reports and the potential return from reporting fraudulently, and provides validity

1The interpretation of implied volatility as a proxy for conditional variance dates back to the seminal work
of Black and Scholes (1973).
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for using implied volatility to capture fraud-induced information uncertainty.

Second, we examine a core model prediction that the strength of detection matches the

severity of fraud. We show that a firm is more likely to be revealed to have committed fraud

in the past (i.e., an earnings restatement is announced or accounting irregularities detected

in the current quarter), if the level of implied volatility prior to the quarter is higher. This

finding is consistent with the regulator rationally allocating more resources towards more

fraudulent firms, thus increasing the likelihood of catching fraud at these firms.

The third analysis intends to show the convergence of fraud level across firms over time.

Specifically, we sort firm-quarters in the sample into quintiles based on the firm’s level of

implied volatility prior to a quarter, and show that firms in a higher-ranked quintile (i.e.,

those having a higher level of implied volatility prior to a quarter) have a smaller increase in

implied volatility during the quarter. This finding supports the model prediction that firms

with a higher level of cumulative fraud are more cautious about continuing fraud (because

they anticipate closer scrutiny from the regulator) while firms with a lower level of cumulative

fraud are more aggressive at committing fraud (because they can hide under the radar). One

concern is that this finding merely reflects the mean-reverting nature of fraud. To mitigate

the concern, we show that the negative relation between prior level of implied volatility (as

measured by quintile rank) and the increase in implied volatility is stronger if a wave of

corporate fraud recently surfaced in the firm’s industry. If firms do converge in their level of

fraud over time, particularly after a regulation manages to crack down on fraud for a group

of firms at the same time, corporate fraud waves likely arise.

To our best knowledge, this is the first study to examine the joint mechanisms of corpo-

rate fraud and regulation in a dynamic setting. Prior theories of earnings manipulation often

assume an exogenous cost related to regulation in a static setting (e.g., Fischer and Verrecchia

(2000); Dye and Sridhar (2004)).2 Closely related to our study, Povel et al. (2007) examine

the joint mechanisms of corporate fraud and investor monitoring. Their model, focusing on

a single firm in a static setting, does not consider the dynamic features of fraud among mul-

tiple firms. Beyer et al. (2019) study earnings manipulation in a dynamic setting but do not

2For a comprehensive review of theories on earnings manipulation, please see two recent surveys by Ewert
and Wagenhofer (2012) and Stocken (2013).
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examine regulators’ endogenous detection. By modeling both the firm’s fraud decision and

the regulator’s enforcement decision, our study takes a holistic view in analyzing the forma-

tion and evolvement of corporate fraud and evaluating the efficacy of anti-fraud regulations.

Our analyses yield two important takeaways. First, fraud is a cat-and-mouse game that is

unlikely to end because the manager’s fraud decision and the regulator’s detection decision

are intertwined based on co-moving MBs and MCs. Given that every regulator faces some

extent of budget constraints and uncovering corporate fraud inevitably consumes regulatory

resources, the amount of resources allocated to a firm should match its level of fraud. Even

though maximizing detection intensity at all times is likely the most effective at cracking

down on fraud in the economy, it is neither feasible nor socially optimal.

Second, our results offer a more complete picture of fraud, regulation, and their interac-

tion. In particular, our results speak to two prior observations that corporate frauds tend

to come in waves and that not only frauds lead regulations but also regulations lead frauds

(Hail et al. (2018)). In our model, these patterns arise not because regulations are ineffective.

Rather, regulations effectively tamp down fraud in the short term but in the long term, syn-

chronize firms’ fraud decisions and allow a wave of frauds to resurface. Hence, fraud remains

a permanent risk in the financial markets and the effectiveness of regulations is limited.

Our study also fits in the broad literature of crime in economics. In particular, several

studies have offered answers to the question of why maximal penalties are not necessarily

desirable in preventing crime. For example, Mookherjee and Png (1992) point out that the

enforcement authority should optimally vary its monitoring effort according to a signal of

the action selected by the potential offender. Bond and Hagerty (2010) prove that marginal

penalties are more attractive in the Pareto inferior crime wave equilibrium. Our results also

speak to this point but work through a unique mechanism. As a white-collar crime, fraud is a

calculated decision that is fundamentally different from violent crimes. For fraud, we are able

to endogenize the economic benefits and costs that enter the manager’s calculus. In contrast,

the benefits of committing a violent crime are often exogenous by nature (e.g., it is hard

to quantify a murderer’s marginal utility). Our analyses yield an important insight about

accounting fraud—its MB and MC go hand-in-hand—which makes it distinct from other
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types of crimes. For this reason, a policy that lets punishment fit the crime should work

uniquely well in addressing fraud, because once an anti-fraud regulation is sufficiently tough

and cracks down on the most fraudulent firms, these firms’ MBs of committing fraud also

drop sharply upon detection (and so the regulator can safely and should optimally decrease

the level of enforcement).

2 Single-firm Model

2.1 Model Setup

We consider a baseline setting in which a representative firm generates economic earnings st

in each period t ∈ {1, 2, ...,∞}. We assume that st follows an AR(1) process such that

st = ρst−1 + εt, (1)

where the correlation coefficient ρ ∈ (0, 1) and the random variable εt ∼ N
(
0, σ2

ε

)
. In each

period, the firm manager privately learns the realization of the firm’s economic earnings st

and issues a report rt. Investors use the report to update their expected firm value Vt. We

assume that Vt is set by a competitive market and equals the firm’s total discounted future

earnings in expectation:

Vt =
∞∑
k=t

δk−tEI [sk|Ft] =
EI [st|Ft]

1− δρ
, (2)

where EI [·|Ft] denotes the investors’ expectation, Ft ≡ {rt, rt−1, ...r1} denotes the set of the

firm’s reports up to time t, and δ ∈ (0, 1) denotes the discounting factor. The manager may

have incentives to manipulate the report rt to boost Vt, because a greater firm value typically

means higher equity compensation and better career prospects for himself.

We model the manager’s earnings manipulation decision as follows. In each period t, after

observing the true economic earnings si, the manager chooses manipulation mt ≥ 0 that adds

mt errors {ξl}mt
l=1 to si. The choice of manipulation mt is observable only to the manager.
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Each error generates either 0 or 1 with Pr (ξl = 0) = q ∈ (0, 1]. The report is then given by:3

rt = st +

mt∑
l=1

ξl. (3)

Using the central limit theorem, we can approximate the distribution of
∑mt

l=1 ξl as

mt∑
l=1

ξl ∼ N (mt (1− q) ,mtq (1− q)) . (4)

With the manager’s manipulation choice mt ≥ 0, the report becomes:

rt = st +mt(1− q) +
√
mtq (1− q)ηt. (5)

ηt ∼ N (0, 1) is a standard normal random variable that is independent of all other variables

in the model. Equation (5) suggests that manipulation has a dual effect on the report: mt

increases the mean of the report but decreases its precision.

We assume that, in each period t, the firm’s fraudulent activity is uncovered with an

aggregate probability of dt = d0+ drt, dt ∈ (0, 1). d0 ∈ (0, 1) denotes the probability with

which fraud is detected in the absence of regulatory involvement, which highlights the fact

that other stakeholders (such as external auditors, whistleblowers, and short-sellers) may also

play a monitoring role. drt ∈ (0, 1) denotes the probability with which fraud is detected with

direct regulatory efforts.4 Specifically, the regulator influences drt by utilizing a detection

technology to inspect the manager’s report rt; the technology consumes regulatory resources

of κ
2 (drt)

2. If the regulator successfully detects fraud, she would require the manager to

restate the report to equal the true earnings, i.e., rt = st, and imposes a penalty Ct on the

3A firm’s earnings aggregate different line items in the financial statements; that is, net income equals
sales revenue minus cost of sales and other expenses. By the way that we model the manipulation decision, a
manager may choose to add one unit of positive bias to each of the line items (e.g., either over-report a revenue
item or under-report an expense item) to inflate the earnings report. However, the manager’s manipulation
attempts may be blocked by the firm’s internal control system, and q denotes the probability with which each
of the manager’s fraudulent attempts fails.

4We acknowledge that there may be some interaction between d0 and drt, although the direction is theo-
retically ambiguous as a higher d0 may render regulatory efforts less necessary (hence a lower drt) or it may
prompt the regulator to step in (hence a higher drt). While potentially interesting, this interaction is outside
the scope of our model.
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Earnings st is realized

and privately observed
by manager.

Manager chooses

manipulation mt and
issues report rt.

Regulator sets detection

probability dt.

With probability dt,

regulator detects fraud,
and penalizes manager.

Figure 1: Timeline of the period-t game

manager that is proportional to the fraudulent amount:

Ct = c(rt − st), (6)

where the coefficient c > 0. We assume that the regulator sets the aggregate detection

probability dt by choosing drt to maximize the informativeness of the set of reports Ft ≡

{rt, rt−1, ...} about the firm value Vt.
5 Note that since the earnings follow an AR(1) process,

the period-t earnings st is a sufficient statistic to estimate all of the firm’s future earnings and

the firm value. Therefore, maximizing the informativeness of Ft is equivalent to maximizing

the informativeness about st, or minimizing the conditional variance about st:

Φt ≡ var (st|Ft) . (7)

Note that it is most cost effective for the regulator to focus on detecting fraud in the

current period’s report rt and uncovering the true earnings st, because st is a sufficient statistic

for estimating all of the firm’s future earnings (as shown in equation (2)). Conditional on the

revelation of st, detecting fraud in the firm’s past reports, {rt−1, rt−2, ...}, incurs additional

costs but does not generate any incremental information benefits.

Figure 1 summarizes the timing of events in each period t.

5In solving the model, we substitute drt with dt − d0 instead of substituting dt with d0 + drt to simplify
the algebra. Since the two are mathematically equivalent, this simplification does not affect any inference.
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2.2 Analysis

In this section, we analyze the manager’s optimal manipulation choice m∗t and the regulator’s

equilibrium detection choice d∗t .
6 For ease of readability, we present only the equations that

illustrate the key intuitions from the model, leaving the detailed derivations to Appendix I.

2.2.1 The manager’s problem

We assume that the manager derives utility from his compensation (or career prospects) that

is proportional to the firm value. To ease notation, we scale up the manager’s utility so that it

simply equals the firm value perceived by investors. In each period t, the manager maximizes

the total present value of his future expected payoffs by choosing manipulation mt:

Ut = max
mt

EM

[ ∞∑
k=0

δkut+k

∣∣∣∣st,Ft
]
. (8)

where EM [·|st,Ft] denotes the manager’s expected utility in period t based on his information

set, which includes st, his privately observed true earnings of the firm for the period, and Ft,

the firm’s publicly released earnings reports in the past. The manager’s period-t payoff is:

ut = d∗t

(
st

1− δρ
− Ct

)
+ (1− d∗t )

EI [st|Ft]
1− δρ

, (9)

where d∗t is the regulator’s period-t detection probability anticipated by the manager.

The two terms of equation (9) represent the manager’s utility under two different sce-

narios, respectively. In the first scenario, the manager’s fraudulent behavior is detected with

probability d∗t . As a result, the firm’s true earnings st is revealed to investors, who would then

update the firm value to st
1−δρ based on st. The manager suffers a penalty of Ct proportional

to mt as shown in equation (6). In the second scenario, the manager’s fraudulent behavior

goes undetected with probability 1− d∗t . Thus, the firm’s true earnings st remains unknown

to investors, who would then have to set the firm value to EI [st|Ft]
1−δρ based on the firm’s public

6Technically speaking, although the regulator sets the detection probability dt after the manager chooses
mt, the two essentially play a simultaneous-move game because the regulator does not observe mt and thus
cannot make dt a function of mt.
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reports Ft. The manager incurs no penalty.

Equation (9) also makes it clear that the manager’s manipulation choice mt only affects

firm value when it is undetected. To solve the optimal m∗t , we first analyze how the investors’

conjectured firm value varies with mt in each period

EI [st|Ft] = (1− wt)ρEI [st−1|Ft−1] + wt [rt −m∗t (1− q)] . (10)

As shown, the investors’ conjectured firm value is a weighted average of their prior of st (the

first term) and the incremental information that they gain from seeing the report rt (the

second term). The prior builds on the AR(1) process of st and equals ρEI [st−1|Ft−1]. To

extract information from the new report, investors rationally subtract the expected manipu-

lation m∗t (1− q), leading to a refined signal rt −m∗t (1− q). The weight

wt =
ρ2Φt−1 + σ2

ε

ρ2Φt−1 + σ2
ε +m∗t q (1− q)

(11)

captures the value relevance of the earnings report, with Φt−1 being the inverse precision of

the prior, as defined in equation (7). When Φt−1 is larger, the prior is less precise and so the

investors have to place a greater weight on the current report to infer firm fundamentals.7

Equation (10) suggests that undetected manipulation mt has a contemporaneous effect as

well as an intertemporal effect on the investors’ conjectured firm value. To see the contempo-

raneous effect, note that mt inflates the current earnings report rt, which in turn boosts firm

value in the current period EI [st|Ft]; this effect works through the second term of the equa-

tion. To see the intertemporal effect, note that EI [st|Ft] serves as the prior for the investors

to conjecture future earnings st+1, so as mt inflates EI [st|Ft], it also boosts firm value in

the next period EI [st+1|Ft]; this effect works through the first term of the equation. In fact,

such bias propagates to all future st+k for k > 0 through the recursive form of equation (10).8

7It is noteworthy that m∗
t in Equation (10) is the investors’ conjectured manipulation by the manager, and

the manager factors in the investor’s conjecture in his maximization problem. In equilibrium, this conjecture
equals the manager’s optimal manipulation choice m∗

t .
8This can be easily seen by shifting equation (10) forward by k period from t to t+ k.
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We summarize the contemporaneous effect and the intertemporal effect of mt below as

∂E [st+k|Ft]
∂mt

=

 wt (1− q) if k = 0

ρk
[∏k

`=1(1− wt+`)
]
wt (1− q) if k > 0.

(12)

Now we solve the manager’s optimal choice of manipulation, m∗t . Taking derivative of Ut

in equation (8) with respect to mt and then substituting in equation (12) derived above, we

obtain the first-order condition (F.O.C.) as

c (1− q) d∗t︸ ︷︷ ︸
MC of mt

= (1− d∗t )
wt(1− q)

1− δρ︸ ︷︷ ︸
MB of mt from the contemporaneous effect

+

∞∑
k=1

δk

[
k∏
`=0

(
1− d∗t+`

)] ρk [∏k
`=1(1− wt+`)

]
wt(1− q)

1− δρ︸ ︷︷ ︸
MB of mt from the intertemporal effect

(13)

The MC of manipulation, expressed on the left hand side (LHS) of the F.O.C., increases

with the regulator’s optimal choice of detection probability d∗t , which is correctly conjectured

by the manager. The MB of manipulation, expressed on the right hand side (RHS) of the

F.O.C., arises from both the contemporaneous effect and the intertemporal effect discussed

above. The difference is that the MB from the contemporaneous effect is only affected

by the likelihood of no detection in the current period (1 − d∗t ), while the MB from the

intertemporal effect is affected by the likelihood of no detection up to a future period of

interest
[∏k

`=0

(
1− d∗t+`

)]
.

Substituting equation (11) for wt+` in equation (13) and solving for m∗t+`, we find that

the manager’s current manipulation choice m∗t depends on his future manipulation choices{
m∗t+1,m

∗
t+2, ...

}
. By induction, we can write m∗t in a recursive form, as shown in Lemma 1

below. Appendix I provides more details on the derivation.

Lemma 1 In each period t, given the regulator’s equilibrium detection choice d∗t conjectured
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by the manager, the manager chooses the optimal manipulation

m∗t =
ρ2Φt−1 + σ2

ε

q (1− q)

[
1− d∗t
cd∗t

(
1

1− δρ
+ δρcq (1− q)

d∗t+1m
∗
t+1

ρ2Φt + σ2
ε

)
− 1

]
, (14)

where Φt is the conditional variance of st, as defined in equation (7).

Given the manager’s optimal manipulation choice, Φt evolves endogenously in the model,

and standard Bayesian updating yields its law of motion, as shown in Lemma 2 below:

Lemma 2 In each period t, if the regulator detects fraud, the conditional variance about the

firm’s earnings st drops to zero, i.e., Φt ≡ 0. If the regulator fails to detect fraud, Φt is a

function of the last-period Φt−1 and the manager’s period-t manipulation in equilibrium m∗t

Φt (d∗t ,Φt−1) =
m∗t q (1− q)

(
ρ2Φt−1 + σ2

ε

)
ρ2Φt−1 + σ2

ε +m∗t q (1− q)
. (15)

The law of motion (15) is intuitive. It states that the uncertainty about the firm’s earnings

Φt is increasing in both the prior uncertainty Φt−1 and the manager’s equilibrium manipula-

tion m∗t in the current period. Iterating (15) over time suggests that Φt essentially depends

on the manager’s undetected manipulation accumulated in the past, i.e.,
{
m∗t ,m

∗
t−1, ...

}
. We

thus hereafter refer to the state variable Φt as either the information uncertainty about the

firm fundamental in period t or the cumulative level of fraud up to period t interchangeably.

2.2.2 The regulator’s problem

We then analyze the regulator’s choice of detection probability dt, given the manager’s equi-

librium manipulation choice m∗t in equation (14). Specifically, the regulator seeks to maximize

her total utility in future periods

Wt = max
dt

EI

[ ∞∑
k=0

δkvt+k

∣∣∣∣Ft
]
. (16)
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EI [·|Ft] indicates that the regulator has the same information set as the investors. vt is the

regulator’s period-t utility

vt = − (1− dt) Φt −
κ

2
(dt − d0)2 . (17)

Equation (17) sums up the regulator’s utility in period t under two scenarios. If detection

succeeds with probability dt, then the true earnings st is revealed and the conditional variance

Φt drops to zero. Alternatively, if detection fails with probability 1−dt, then the conditional

variance remains at Φt > 0. Under either scenario, the regulator incurs a cost for detection

of κ
2 (dt − d0)2.

As in the manager’s maximization problem, the regulator’s choice of detection likelihood

in period t also carries two effects. First, a higher dt increases the regulator’s period-t utility

by boosting the chance of detection success (upon which Φt is decreased to zero); this is the

contemporaneous effect of detection. Second, clearing Φt also reduces the expected level of

Φt+` for all ` > 0 because Φt affects all future Φt+` through the law of motion specified in

equation (7); this is the intertemporal effect of detection.

Now we solve the regulator’s choice of optimal detection likelihood, d∗t . We obtain the

F.O.C. as

κ (dt − d0)︸ ︷︷ ︸
MC of dt

= Φt − 0︸ ︷︷ ︸
MB of dt from the contemporaneous effect

+ δ [Wt+1 (0)−Wt+1 (Φt)] .︸ ︷︷ ︸
MB of dt from the intertemporal effect

(18)

Wt+1 (Φ) denotes the regulator’s objective function evaluated at an initial level of uncer-

tainty Φ. As in the F.O.C. for the manager’s problem, we express the MC of detection on

the LHS and the MB of detection on the RHS. The MC is proportional to the amount of

detection intensity contributed by the regulator, drt = dt − d0. The MB is increasing in the

cumulative level of fraud Φt as it comes from clearing uncertainty about st in the current

period (the contemporaneous effect) and decreasing prior uncertainty for all future periods

(the intertemporal effect). Specifically, Wt+1(0) −Wt+1(Φt) > 0 represents the capitalized
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value of resetting the initial uncertainty from Φt to zero for all future periods upon successful

detection. Finally, we solve d∗t from the F.O.C, which yields the following lemma.

Lemma 3 In each period t, the regulator chooses the optimal detection probability

d∗t (Φt−1) = d0 +
Φt + δ [W (0)−W (Φt)]

κ
, (19)

where Φt is expressed recursively in equation (7).

2.2.3 The equilibrium

Because our model features an infinite horizon and both m∗t and d∗t can be written recursively

as functions of Φt−1, we can treat Φt−1 as the state variable for period t and characterize the

equilibrium as a dynamic programming problem with the Bellman equations below. For ease

of notation, we omit the time subscript and denote variables of the next period with a prime.

Proposition 1 For a given level of accumulated past fraud Φ, the regulator’s equilibrium

detection choice d∗ (Φ) and the manager’s equilibrium manipulation choice m∗ (Φ) are given

by the following set of equations, with the two agents rationally anticipating each other’s

optimal policy function:

d∗ (Φ) = d0 +
Φ′ + δ [W (0)−W (Φ′)]

κ
, (20)

m∗ (Φ) =
ρ2Φ + σ2

ε

q (1− q)

[
1− d∗

cd∗

(
1

1− δρ
+ δρcq (1− q) d

∗ (Φ′)m∗ (Φ′)

ρ2Φ′ + σ2
ε

)
− 1

]
, (21)

where

Φ′ (Φ) =
m∗ (Φ) q (1− q)

(
ρ2Φ + σ2

ε

)
ρ2Φ + σ2

ε +m∗ (Φ) q (1− q)
, (22)

W (Φ) = − (1− d∗) Φ′ − κ

2
(d∗ − d0)2 + δ

[
d∗W (0) + (1− d∗)W

(
Φ′
)]
. (23)

The dynamic programming problem in Proposition 1 does not have a closed-form solution

so we solve the full model numerically to analyze the key properties of these policy functions.

Appendix I provides details on the numerical method. In the analyses below, we first glean
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some insights into the solution by approximating it locally using Taylor expansion. We then

present the results generated from our numerical solution.

First consider a first-order approximation to the condition on d∗ in equation (20). Ap-

proximating the condition with a first-order Taylor expansion on the value function W around

Φ′ = 0 gives that:

d∗ = d0 +
1

κ

[
1− δ

(
dW (Φ)

dΦ

∣∣∣∣
Φ=0

)]
Φ′. (24)

The equation suggests that the regulator’s choice of optimal detection strength d∗ is increasing

in Φ′. That is, the regulator matches the strength of fraud detection with the severity of fraud

in equilibrium. This result is intuitive because the manager’s manipulation in the past adds

noises to the firm’s reports and decreases informativeness. Since the regulator’s objective is

to clear fraud and restore informativeness of the firm’s reports, her gains are higher from

detecting reports with more extensive fraud. In other words, the regulator’s MB of detection

is increasing in the cumulative level of fraud and so is her choice of optimal detection strength.

Next, we use the approximated d∗ in equation (24) to draw some inferences about the

properties of the equilibrium manipulation m∗ (Φ). Most interestingly, we find that m∗ can

be non-monotonic in Φ. To see this, recall that from Lemma 1, fixing the regulator’s detection

choice, m∗ is increasing in Φ. Intuitively, all else equal, the manager has greater incentives

to commit fraud as the market faces a higher uncertainty about the firm and relies on the

manager’s report to a larger extent. However, our discussion of d∗ above suggests that as Φ

increases, the regulator would invest more heavily in the detection technology, which deters

manipulation and reduces m∗. The two countervailing effects go hand-in-hand, which may

lead to a non-monotonic relation between m∗ and Φ.

The analysis above builds on a linear approximation of the model solution. Next, we solve

the model numerically to verify our findings. We set the six model parameters as follows: the

subjective discount rate, δ, equals 0.9, a value commonly used in the literature; the success

rate of manipulation, q, equals 0.5, an innocuous assumption in the model; the persistence

of the AR(1) process that governs the dynamics of the economic earnings st, ρ, equals 0.88;

the conditional standard deviation of the AR(1) process, σε, equals 0.15; the detection cost
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Figure 2: Equilibrium detection probability d∗ (Φ).

parameter, κ, equals 2.5; and the manager’s cost parameter, c, equals 3, which suggests that

the fine imposed on the manager is three times of his manipulation amount upon detection.

Figure 2 depicts the regulator’s optimal detection intensity d∗t as a function of the firm’s

state variable Φt−1. Consistent with our analysis using linear approximation, the numerical

solution suggests that a higher level of cumulative fraud increases the regulator’s choice of

detection intensity, which in turn increases the manager’s MC of manipulation.

Figure 3 depicts the manager’s optimal manipulation m∗t also as a function of the state

variable Φt−1. Based on the set of parameter values that we use in the numerical solution, we

find that the equilibrium manipulation is hump-shaped in the firm’s cumulative fraud. The

intuition is clear: when Φ is very low (close to 0), the market is highly informed about the

firm’s economic earnings and puts little weight on the firm’s new report. This implies a low

MB of manipulation and fewer incentives for the manager to inflate the report. When Φ is very

high, the regulator increases detection efforts, which sharply increase the MC of manipulation.
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Figure 3: Equilibrium manipulation m∗ (Φ).

Trading off the MB and MC of manipulation, the manager’s optimal manipulation may appear

in the intermediate range of Φ, leading to a hump-shaped relation between m∗ and Φ.

3 Multi-firm Model

3.1 Model Setup

In this section, we expand the single-firm model to study the dynamic features of fraud

among multiple firms. The model setup is similar as before with two exceptions. First, the

economy contains N firms, and their economic earnings are independent of each other. This

assumption allows us to abstract away from the effects of information spillovers, which are

not a central focus of this study. Most of our numerical analyses focus on a special case with

three firms, i.e., N = 3. Second, the regulator has to allocate limited resources among N firms
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towards fraud detection. Specifically, in each period, the regulator conducts an independent

inspection of each firm’s report and we denote the probability that the inspection uncovers

fraud in firm i’s report by dit = d0 + dirt ∈ [d0, 1], where i ∈ {1, 2, ..., N} and dirt represents

the regulator’s choice of detection technology to influence the probability of detecting fraud

at firm i. We assume that the total detection cost for each period is:

κ

2

(
N∑
i=1

dirt

)2

. (25)

The structure of this cost function is consistent with the regulator having a limited budget

for fraud detection, in the sense that if she allocates more resources towards inspecting one

firm’s report, her MC of detecting fraud at other firms goes up.

3.2 Analysis

In the multi-firm model, the manipulation decision of each manager and the detection decision

of the regulator can be similarly characterized as in the single-firm model. Both m∗it and d∗it

can be written recursively as functions of the cumulative levels of past fraud at all firms,

{Φ1t−1,Φ2t−1,Φ3t−1}. Hence we can treat {Φ1t−1,Φ2t−1,Φ3t−1} as the set of state variables

for period t and characterize the equilibrium as a dynamic programming problem with the

Bellman equations below. For ease of notation, we omit the time subscript and denote

variables of the next period with a prime.9

Proposition 2 Consider a three-firm model. Given the levels of accumulated past fraud at

the three firms {Φ1,Φ2,Φ3}, the manager in firm 1 chooses manipulation

m∗1 (Φ1,Φ2,Φ3) =
ρ2Φ1 + σ2

ε

q (1− q)

(
1− d∗1
cd∗1

(
1

1− δρ
+
cδρq (1− q)
ρ2Φ′1 + σ2

ε

× E
[
m∗′1 d

∗′
1

])
− 1

)
, (26)

9As in the single-firm model, in solving the multi-firm model, we continue to substitute dirt with dit − d0
and solve for the optimal dit to simplify the algebra.
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and the regulator chooses to detect fraud at firm 1 with probability

d∗1 (Φ1,Φ2,Φ3) =
1

κ
{Φ′1 + δ (1− d∗2) (1− d∗3)

[
W
(
0,Φ′2,Φ

′
3

)
−W

(
Φ′1,Φ

′
2,Φ

′
3

)]
+ δ (1− d∗2) d∗3

[
W
(
0,Φ′2, 0

)
−W

(
Φ′1,Φ

′
2, 0
)]

+ δd∗2 (1− d∗3)
[
W
(
0, 0,Φ′3

)
−W

(
Φ′1, 0,Φ

′
3

)]
+ δd∗2d

∗
3

[
W (0, 0, 0)−W

(
Φ′1, 0, 0

)]
} − (d∗2 + d∗3 − 3d0) , (27)

where

Φ′i (Φ1,Φ2,Φ3) =
m∗i q (1− q)

(
ρ2Φi + σ2

ε

)
ρ2Φi + σ2

ε +m∗i q (1− q)
, (28)

E
[
m∗′1 d

∗′
1

]
= (1− d∗2) (1− d∗3)m∗1

(
Φ′1,Φ

′
2,Φ

′
3

)
d∗1
(
Φ′1,Φ

′
2,Φ

′
3

)
+d∗2 (1− d∗3)m∗1

(
Φ′1, 0,Φ

′
3

)
d∗1
(
Φ′1, 0,Φ

′
3

)
+ (1− d∗2) d∗3m

∗
1

(
Φ′1,Φ

′
2, 0
)
d∗1
(
Φ′1,Φ

′
2, 0
)

+d∗2d
∗
3m
∗
1

(
Φ′1, 0, 0

)
d∗1
(
Φ′1, 0, 0

)
, (29)

W (Φ1,Φ2,Φ3) = − (1− d∗1) (1− d∗2) (1− d∗3)
[
Φ′1 + Φ′2 + Φ′3 − δW

(
Φ′1,Φ

′
2,Φ

′
3

)]
− (1− d∗1) d∗2 (1− d∗3)

[
Φ′1 + Φ′3 − δW

(
Φ′1, 0,Φ

′
3

)]
− (1− d∗1) (1− d∗2) d∗3

[
Φ′1 + Φ′2 − δW

(
Φ′1,Φ

′
2, 0
)]

− (1− d∗1) d∗2d
∗
3

[
Φ′1 − δW

(
Φ′1, 0, 0

)]
−d∗1 (1− d∗2) (1− d∗3)

[
Φ′2 + Φ′3 − δW

(
0,Φ′2,Φ

′
3

)]
−d∗1d∗2 (1− d∗3)

[
Φ′3 − δW

(
0, 0,Φ′3

)]
−d∗1 (1− d∗2) d∗3

[
Φ′2 − δW

(
0,Φ′2, 0

)]
+δd∗1d

∗
2d
∗
3W (0, 0, 0)− κ

2
(d∗1 + d∗2 + d∗3 − 3d0)2 . (30)

The manipulation choices {m∗2,m∗3} and the detection choices {d∗2, d∗3} at firms 2 and 3 can

be analogously derived and given in the appendix.

Proposition 2 suggests that the dynamics of the manipulation and the detection decisions

in the multi-firm model is largely in line with that in the single-firm model. There are,
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however, two new insights. First, the managers’ manipulation decisions are endogenously

linked because the regulator’s choices of detection intensity are interdependent across firms.

As such, a manager’s manipulation choice becomes a function of the cumulative levels of fraud

at all firms. Second, while the manager in the single-firm model is able to precisely conjecture

the future equilibrium manipulation and detection choices
{
m∗t+1, d

∗
t+1

}
(as shown in equation

(14)), managers in the multi-firm model face uncertainty and must form expectations about

the two equilibrium choices. This is because, due to the interdependence of detection and

manipulation choices across firms, the manager at firm i rationally anticipates that the pair of

the future manipulation and detection choices
{
m∗it+1, d

∗
it+1

}
are also functions of the future

cumulative levels of fraud at the other firms, {Φit}. However, at the time of choosing mit in

period t, the value of Φit is random as it depends on whether the regulator detects fraud in

the other firms later in period t.

We solve the remaining parts of the three-firm model numerically using the same param-

eter values set for the one-firm model. Based on the numeric solution, we first analyze the

regulator’s detection decisions. In the three-firm model, the detection intensity imposed by

the regulator on a given firm depends on not only the firm’s own information uncertainty

from cumulative fraud but also how it compares to information uncertainty about the other

two firms in the economy. To facilitate our analysis below, we present the model solution

for a special case when Φ2 = Φ3. That is, we exemplify our model predictions by analyzing

the detection intensity on different firms assuming that firm 2 and 3 have the same level of

information uncertainty from cumulative fraud. It is easy to verify that, by model symmetry,

the detection intensity on firm 2 and 3 is identical in this case, that is, d2 = d3.

Figure 4 illustrates the model solution for d1 and d2 (d3) in heatmaps. Specifically, the x-

axis represents the information uncertainty for firm 2 and 3, which is assumed to be identical

in this example (i.e., Φ2 = Φ3). The y-axis represents the information uncertainty for firm 1

(i.e., Φ1). The depth of color indicates the detection intensity, with light color representing

a higher intensity of detection. The scale bar on the side maps the depth of color to the

numerical value of detection intensity. The left (right) panel shows the detection intensity

for firm 1 (firm 2 and 3) as a function of the three state variables, Φ1, Φ2, and Φ3.
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Figure 4: Equilibrium detection probability d∗i in the three-firm setting.

Three interesting observations emerge. First, the regulator focuses on firm 1 when its

cumulative fraud is high and its information uncertainty stands out among the three firms.

Specifically, in the northwest corner where Φ1 >> Φ2 = Φ3, the regulator invests almost all

resources in detecting fraud at firm 1, leaving firm 2 and 3 under the radar. Vice versa, in

the southeast corner where firm 2 and 3 both accumulate much fraud and leave firm 1 behind

(i.e., Φ2 = Φ3 >> Φ1), we observe more regulatory resources directed towards firm 2 and 3

and little regulatory attention is given to firm 1.

Second, the two scenarios are not entirely symmetric as the detection intensity imposed on

firm 1 (about 0.12) in the first scenario is much larger than the detection intensity imposed on

firm 2 and 3 (about 0.08, respectively) in the second scenario. This is because the regulator’s

cost of detection is convex in the aggregate detection intensity, as shown in equation (25),

and thus the MC of detecting one firm also depends on whether other firms in the economy

require close scrutiny. The model implies that detection is the most costly if fraud tends to

cluster across firms (i.e., fraud wave), a feature that we will study later in the paper.

Lastly, we observe that when the three firms’ information uncertainty converges along the

45-degree line (i.e., Φ1 = Φ2 = Φ3), the regulator has to split the detection resource equally
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among them, which implies d1 = d2 = d3.

It is noteworthy that, even though we illustrate the model-implied detection policy above

using a special case with Φ2 = Φ3, the intuition is the same in more general cases when the

three firms have different levels of information uncertainty from cumulative fraud.10

Given the regulator’s detection policy discussed above, equation (26) suggests that man-

agers’ manipulation decisions are also interdependent in our model. Intuitively, if one firm

stands out in its cumulative fraud, it should expect close scrutiny from the regulator and

so the MC of further committing fraud likely outweighs the MB, leading the manager to be

more conservative. Ironically, as the firm with the highest information uncertainty attracts

the most attention by the regulator, other firms are subject to less scrutiny and can afford to

become more aggressive in committing fraud. To the extent that manipulation in each period

accumulates and adds to the firms’ information uncertainty over time, our model predicts an

unintended consequence of regulation: it synchronizes managers’ manipulation decisions and

may eventually lead to fraud waves even in the absence of systematic shocks in the economy.

We next use the model to study the dynamics of the fraud-detection game between the

regulator and three firms with different levels of fraud-induced information uncertainty in

the initial period. Without loss of generality, we assume that ΦH > ΦM > ΦL at t = 1 and

denote the three firms H-, M- and L-firm, respectively. We then simulate the magnitude of

manipulation committed by each manager mi, the regulator’s detection policy on each firm

di, and the realization of detection outcomes at the end of each period. As we simulate the

model forward, it generates the time series of Φit, d
∗
it, and m∗it. Figure 5 plots the three

variables over the simulation path.

Starting with L-firm (depicted by the red-dash line), because the regulator anticipates

a low level of cumulative fraud in the firm (i.e., a low ΦL in Panel A), she spends little on

detection (i.e., a low dL in Panel B). The firm manager thus continues to commit fraud (i.e.,

increasing mL in Panel C) because the MC is low and fraud starts building up (i.e., increasing

ΦL in Panel A). The first ten periods of the red dash line in Figure 5 illustrate this stage.

10For illustration purposes, we solve the model in closed form in a special case with the discounting factor
δ = 0, and the equilibrium solution is indeed consistent with the numerical results shown in Figure 4. The
detailed analysis is in Appendix II.
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M-firm (depicted by the brown-solid line) starts with an intermediate level of cumulative

fraud. On the one hand, the manager of M-firm has greater incentives to commit fraud than

the manager of L-firm, because a higher Φ increases the MB of committing fraud. On the

other hand, the regulator invests more heavily in fraud detection of M-firm than L-firm, which

suggests a higher MC of committing fraud. The two effects go hand-in-hand. The first five

periods of the brown-solid line in Figure 5 show the stage when MB dominates MC, and thus

mM increases over time as ΦM grows. After the sixth period, we observe that the detection

intensity on M-firm quickly rises (see the brown-solid line in Panel B) and MC outweighs

MB, leading to a sharp decline in manipulation by M-firm (see the brown-solid line in Panel

C). The dynamics in mM therefore demonstrates the counteracting forces of MB and MC.

Last, H-firm (depicted by the blue-dot line) starts with the highest level of cumulative

fraud. Accordingly, it is under the closest scrutiny by the regulator. The regulator concen-

trates on detecting H-firm in the first five periods until the cumulative fraud of M-firm (and

L-firm) catches up and gets close to that of H-firm after the 6th (11th) period, after which

the detection intensity of H-firm and M-firm (and L-firm) starts converging. The blue-dot

line depicts the trajectory of H-firm’s ΦH , mH , and dH in three panels, respectively.

To examine the impact of actual detection, we assume in the simulation trial that H-

firm is caught by the regulator at period 30. Upon detection, H-firm’s cumulative fraud is

cleared and ΦH drops to zero immediately, as shown in Panel A. As an optimal response, the

regulator shifts attention from H-firm to the original M- and L-firms, as shown in Panel B.

Interestingly, as the detection intensity on H-firm drops substantially, H-firm faces a low MC

of committing fraud and can now afford to become more aggressive in manipulating its report.

This explains the sharp increase in mH and ΦH in Panel C and A right after period 31. If M-

and L-firms remain undetected, cumulative fraud in the three firms will be synchronized again

after another few periods. This analysis sheds further light on an unintended consequence of

regulation: it may synchronize firms’ manipulation decisions and lead to fraud waves even in

the absence of aggregate shocks. The intuition is simple: anticipating the optimal allocation of

regulatory resources in the economy, firms with a low level of cumulative fraud endogenously

choose a high level of manipulation, allowing them to catch up to more fraudulent firms.
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4 Data and Sample

This section describes the sample, variables used in our empirical analyses, and data sources

used to construct these variables. Detailed variable definitions are provided in Appendix III.

4.1 Sample Selection

We obtain the initial sample of 18,340 accounting restatements from Audit Analytics. These

restatements, announced by 10,404 unique firms between 1995Q1 and 2019Q3, cover 105,088

firm-quarters between 1983Q1 and 2019Q2 based on misstating periods. Because the coverage

of the Audit Analytics restatement database is relatively narrow before 1999, we focus on

the time period starting from 1999Q1. We merge the restating quarters into the universe of

Compustat-CRSP. We then obtain implied volatility data from Option Metrics and analyst

forecast data from IBES. The final sample, spanning from 1999Q1 to 2017Q4, represents an

intersection of the databases that we use. The number of firm-quarter observations used in

our main analyses ranges between 134,566 and 151,048.

4.2 Measurement of Information Uncertainty and Detection

As discussed in Section 2, our model analyses center on the interdependence of Φ, the fraud-

induced information uncertainty in each period, and d, the fraud detection likelihood in each

period. To measure information uncertainty, we extract the implied volatility from options.

Since option prices reflect the market’s expectations about changes in the firm’s value given all

available information, implied volatility captures the conditional variance of this information

set, which increases with the information uncertainty brought by cumulative fraud. While

options typically expire on the third Friday of the contract month, firms make their earnings

announcements at various times. Thus, the time between each firm’s earnings announcement

and its option expiration date differs. To minimize measurement error that may arise because

of this non-constant maturity, we use the implied volatility from 90-day standardized option

prices provided by Option Metrics. Specifically, we first take the mean of the 90-day call- and

put-implied volatility to capture the market’s uncertainty about the firm’s economic earnings.
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We then construct quarterly implied volatility by taking the mean of daily implied values.

We denote the variable IV .

To operationalize the second parameter—detection likelihood—we code DETECT as

an indicator variable that equals one if an earnings restatement likely to be fraudulent is

announced in a quarter, and zero otherwise. One notable finding in the accounting literature

is that not all restatements are related to fraud; some are unintentional misapplications of

accounting rules and have little effect on stock prices (Hennes et al. (2008); Fang et al. (2017)).

We define fraud-related restatements as those that meet at least one of the three following

conditions: (1) if the restatement is marked as being fraudulent by Audit Analytics; (2) if

the restatement has received a class-action lawsuit as recorded in Audit Analytics; or (3) if

the cumulative restated amount (scaled by the total assets as of the last restating period) is

in the top decile of the sample. Restatement announcements are usually made through SEC

filings or press releases. This proxy builds on the idea that the unconditional probability of

fraud getting caught ex post is higher given a higher detection likelihood ex ante.

4.3 Analyst Forecast and Control Variables

We use analyst consensus earnings forecast as a proxy for earnings expectation. To mea-

sure how earnings expectation changes in response to reported earnings, we first define

REV ISION as the difference of one-quarter-ahead earnings forecast issued before and after

the earnings announcement. We define earning surprise, SUE, as the difference between

reported earnings and the pre-announcement consensus forecast. The REV ISION -to-SUE

sensitivity thus captures how market updates its expectation in response to reported earnings

and we expand on the discussion of this sensitivity measure in Section 5.

For controls, we follow prior literature and include four controls previously shown to affect

a firm’s level of earnings manipulation (e.g., Kothari et al. (2005); Zang (2012)), namely, the

natural logarithm of total assets (SIZE), market-to-book (MB), return on assets (ROA),

and leverage (LEV ). Among the four controls, SIZE and MB also help control for firm

growth. This is important because prior studies show that growth affects firms’ incentives to

manipulate earnings (e.g., Povel et al. (2007); Wang et al. (2010); Strobl (2013); Wang and
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Winton (2014)). We further include REV GWTH, the percentage change of sales from the

same quarter of the last year, as an additional control for growth. Firm financials are from

the Compustat quarterly files.

4.4 Descriptive Statistics

Table 1 reports the descriptive statistics of the variables used in our analyses. IV has a mean

of 0.461, a median of 0.406, and a standard deviation of 0.225. The mean of Detect is 0.008,

which suggests that, on average, a firm in our sample has a 0.8% likelihood to have at least

one fraud-related restatement announced in each quarter.

5 Empirical Analyses

5.1 Information Uncertainty and Analyst Revision

Our model predicts that the MB of committing fraud is positively associated with the firm’s

cumulative fraud to date, because a higher level of cumulative fraud increases information

uncertainty about the firm both in the current period and in future periods, which in turn

boosts the value of the new earnings report and potential return from inflating the report.

To test this prediction, we examine the relation between analysts’ revision of earnings

estimates for the next quarter following earnings announcement of the current quarter and

implied volatility immediately prior to the current quarter by estimating the following re-

gression:

REV ISIONi,q = α+ β1SUEi,q × IVi,q + β3SUEi,q + β4IVi,q + βcCONTROLSi,q−1, (31)

where subscript i indexes firms and q indexes fiscal quarters. US companies are required

to report earnings no later than 45 days after the end of a fiscal quarter and analysts can

continue to revise their estimates until the day of earnings announcement. The dependent

variable, REV ISION , thus measures the change in the analyst consensus earnings per share

(EPS) forecast for firm i’s quarter q, between earnings announcement for quarter q−1 (made
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in quarter q) and that for quarter q (made in quarter q + 1). Among the regressors, SUE

represents standardized unexpected earnings of firm i-quarter q − 1 announced in quarter q.

Unexpected earnings are defined as the difference between the firm’s reported EPS and its

analyst consensus EPS forecast two days prior to earnings announcement, scaled by stock

price two days prior to earnings announcement. As discussed in Section 4.2, IV intends

to capture the degree of information uncertainty about firm i brought by cumulative fraud,

taken ten trading days before earnings announcement for quarter q − 1 in quarter q. The

interaction term between SUE and IV captures the extent to which implied volatility affects

the sensitivity of analyst forecast revision to unexpected earnings. We include year-quarter

fixed effects, and cluster standard errors by firm and quarter.

Table 2 column (1) reports the regression results of estimating equation (31). The coeffi-

cient of interest β1 on SUE × IV is positive and significant at the 1% level, which indicates

that analysts are more responsive to the firm’s unexpected earnings of the current quarter in

their revision of earnings estimates for the next quarter, when the implied volatility of the

firm prior to the announcement is higher. This is consistent with our model prediction that

the market is more likely to value the reported earnings, particularly the portion that differs

from the market’s expectations, when information uncertainty is greater because of a higher

level of cumulative fraud.

In Table 2 column (2), we reestimate equation (31) including several controls. NEG

is an indicator variable denoting whether the reported earnings of firm i-quarter q − 1 are

negative. The interaction term between NEG and IV captures the asymmetric reaction

to positive versus negative earnings that analysts may exhibit in their forecast revision.

Other controls, measured for firm i-quarter q, include the natural logarithm of total assets

(SIZE), market-to-book (MB), return on assets (ROA), leverage (LEV ), and seasonally

adjusted sales growth (REV GWTH). In Table 2 column (3), we further include firm fixed

effects. The coefficient of interest, β1, remains positive and significant at the 1% level, in

both columns. Again, this result suggests that the MB of committing fraud is larger when

the information uncertainty about the firm is higher because unexpected earnings elicit more

responsive analyst forecast revision.
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Among the controls, the coefficient on SUE × NEG, is negative and significant at the

1% level, which indicates that analyst forecast revision is less responsive to the firm’s un-

expected earnings when reported earnings are negative. SUE in itself is positively related

to REV ISION , as expected, while IV and NEG are negatively related to REV ISION .

Finally, analyst forecast revision tends to be more positive for firms with stronger growth,

but less positive for firms with higher leverage.

5.2 Information Uncertainty and Detection Likelihood

A core prediction from our model is that the strength of detection optimally matches the

severity of fraud. To test this prediction, we examine the relation between the likelihood

of having fraud revealed in a given quarter and implied volatility immediately prior to the

quarter by estimating the following regression:

DETECTi,q+1 = α+ β1IVi,q + βcCONTROLSi,q−1. (32)

The dependent variable, DETECT , is an indicator variable that denotes whether a fraud-

related accounting restatement is announced for firm i in a given quarter q + 1. IV is the

average daily implied volatility of quarter q. We continue to include year-quarter fixed effects,

and cluster standard errors by firm and quarter.

Table 3 column (1) reports the regression results of estimating equation (32). The coeffi-

cient of interest, β1, is positive and significant at the 1% level, supporting the model prediction

that fraud detection likelihood is larger when a firm has accumulated a higher level of fraud.

In columns (2) and (3), we reestimate equation (32) including five basic firm characteristics.

The coefficient of interest, β1, remains positive and significant at the 1% level in column (2)

excluding firm fixed effects and in column (3) including firm fixed effects, respectively. This

result suggests that the manager’s MC of committing fraud is larger when the information

uncertainty about the firm (partly brought by cumulative fraud) is greater because detection

likelihood is higher. It is also consistent with the regulator’s MB of detecting fraud being

larger when a firm’s fraud-induced information uncertainty is greater, which would lead the
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regulator to rationally allocate more resources towards the firm.

A potential concern of the detection indicator is that not all firms in the sample are

covered by Audit Analytics so measurement error is likely greater for firms with no recorded

restatements in the database. To address this concern, in Table 3 column (4), we focus on a

subsample of firms with at least one restatement announcement tracked by Audit Analytics.

For each firm, we include the entire time series of quarterly observations during the sample

period. Results using this subsample remain similar.

5.3 Convergence of Fraud

One interesting implication from the analyses of our multi-firm model is that anti-fraud

regulations are unlikely to eradicate fraud but may synchronize firms’ fraud decisions. This

is because, while the optimal allocation of regulatory resources towards the more fraudulent

firms has a disciplinary effect on these firms, it implies less scrutiny of less fraudulent firms,

allowing their fraudulent behavior to go undetected and level of fraud to catch up. As such,

firms converge towards each other in their level of fraud.

To study the possible convergence of fraud across firms over time, we sort firm-quarters

in the sample into quintiles based on firms’ level of implied volatility of prior quarter, and

then estimate the following regression:

∆IVi,q to q+1 = α+ β1IV Q1i,q + β2IV Q2i,q + β3IV Q4i,q + β4IV Q5i,q + βcCONTROLSi,q−1,

(33)

∆IV measures the change in the firm’s average daily implied volatility from quarter q to q+1.

IV Qn is an indicator variable that denotes whether a firm-quarter falls into the nth-ranked

quintile (n=1 to 5), with a higher-ranked quintile representing the subsample with a higher

level of average daily implied volatility in quarter q. We omit IV Q3 from the regression to

avoid multicollinearity so the middle quintile serves as the benchmark group. We include

basic controls and year-quarter fixed effects, and cluster standard errors by firm and quarter.

Table 4 columns (1) and (2) report the regression results of estimating equation (33),

without and with firm fixed effects. Compared with those in the middle quintile (IV Q3=1),
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firms in a lower-ranked quintile of implied volatility prior to a quarter tend to have a larger

increase in implied volatility during the quarter, as evidenced by a positive coefficient es-

timate on IV Q2 and an even larger one on IV Q1. Also benchmarked against the middle

quintile, firms in a higher-ranked quintile of implied volatility prior to a quarter tend to have

a smaller increase in implied volatility during the quarter, as evidenced by a negative coeffi-

cient estimate on IV Q4 and an even more negative one on IV Q5. This finding sheds light

on the convergence of corporate fraud across firms over time.

One concern is that this finding merely reflects the mean-reverting nature of IV . To

address the concern, we augment equation (33) by further including the interaction terms

between IV Qn (n=1, 2, 4, and 5) and WAV E, an indicator denoting whether a firm-quarter

overlaps with a fraud wave in the firm’s industry. To define WAV E, we first compute

FRAUD%, the percentage of firms with restatement announcement in an industry-quarter.

We code WAV E as one if the actual FRAUD%j,q for industry j–quarter q exceeds the 90th

percentile of its sample distribution and zero otherwise. The industry classification is based

on the Global Industry Classification Standard (GICS) 4-digit industry groups.

Table 4 column (3) reports the regression results of estimating the augmented equation,

including firm fixed effects. As in columns (1)-(2), firms in a higher-ranked quintile (i.e.,

those having a higher level of implied volatility prior to a quarter) have a smaller increase

in implied volatility during the quarter, as evidenced by the positive coefficient estimates on

IV Q1 and IV Q2 and the negative coefficient estimates on IV Q4 and IV Q5. This pattern

is more pronounced when a firm-quarter overlaps with a fraud wave in the firm’s industry,

as evidenced by the positive coefficient estimates on the interaction term between WAV E

and IV Q1 and that between WAV E and IV Q2 and the negative coefficient estimates on the

interaction term between WAVE and IV Q4 and that between WAV E and IV Q5. This find-

ing suggests that the negative relation between prior level of implied volatility (as measured

by quintile rank) and the increase in implied volatility in a quarter is not merely reflective of

the mean-reverting nature of corporate fraud, or it should not be affected by the existence of

an industry-level fraud wave. Rather, this finding is more consistent with the convergence in

firms’ level of fraud over time.
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6 Conclusion

Throughout history, developed and emerging financial markets alike have been booming,

crashing, and recovering their way through a wide range of corporate frauds. With the fallout

of every major financial scandal comes the public outcry for regulations and reforms to crack

down on fraud. This paper aims to lay out a theoretical foundation to better understand the

formation and evolvement of accounting fraud, which would then allow for an assessment of

anti-fraud regulations.

We first build a dynamic model featuring a representative firm and a regulator. Analyses

of this single-firm model show that fraud is unlikely to go extinct, as long as uncovering fraud

consumes regulatory resources and such resources are finite. With the regulator rationally

directing resources towards the most fraudulent firms, an increasing level of fraud accumu-

lated in the firm attracts scrutiny, but at the same time generates information uncertainty,

which gives further incentives to commit fraud. These two effects go hand-in-hand, counter-

acting each other. As such, the amount of fraud committed in the firm may exhibit repeated

cycles of rise, peak, fall, and collapse (upon detection). We present two pieces of evidence in

support of these model predictions. First, using implied volatility to capture fraud-induced

information uncertainty, we find that analyst forecast revision is more responsive to unex-

pected earnings when implied volatility is higher. This result explains why a high level of

cumulative fraud may further elevate the MB of committing fraud. Second, we find that a

firm is more likely to be caught for having committed fraud in the past when implied volatility

is higher. This result supports the model prediction that the strength of detection matches

the severity of fraud, and explains why a high level of cumulative fraud may also increase the

MC of committing fraud.

We then expand the model to consider a regulator and three firms with a high, medium,

and low level of cumulative fraud, respectively. Analyses of this multi-firm model offer addi-

tional insights. Anti-fraud regulations can be highly effective at lowering the most fraudulent

firms’ incentives to continue fraud, by not only raising their MC of committing fraud but

also sharply decreasing their MB of committing fraud upon detection. However, the rational
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allocation of regulatory resources towards such firms may imply less scrutiny of less fraudu-

lent firms, allowing the latter’s fraudulent behavior to go undetected and their level of fraud

to catch up. As such, despite the pro tem “cracking-down,” anti-fraud regulations do not

eradicate fraud. Rather, they synchronize firms’ idiosyncratic fraud decisions and induce

corporate fraud waves over time. As supportive evidence of this insight, we show that firms

with a higher level of implied volatility prior to a period have a smaller increase in implied

volatility during the period. Further, we show that this association is unlikely to be explained

by the mean-reverting nature of fraud.

Although consistent with the model predictions, our results are no definitive evidence

because the theoretical constructs are abstract and measurement of these constructs is ad-

mittedly imperfect. Thus, our inferences are subject to caveats. More research on the joint

mechanisms of fraud and regulation is warranted, particularly if better empirical proxies for

fraud and detection likelihood become available.
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Table 1: Summary Statistics
This table reports summary statistics of the variables used in the analysis. IV is the quarterly
average of the daily implied volatility. DETECT is an indicator that denotes whether a firm
discloses an accounting restatement that meets at least one of the three conditions: (1) if the
restatement is marked as being fraudulent by Audit Analytics; (2) if the restatement has received a
class-action lawsuit as tracked by Audit Analytics; or (3) if the cumulative restated amount (scaled
by the total assets as of the last restating period) is in the top decile of the sample. REV ISION is
the change in the analyst consensus EPS forecast for the current quarter surrounding the earnings
announcement of the previous quarter. SUE is the earnings surprise of the previous quarter.
NEG is an indicator that denotes negative earnings of the previous quarter. SIZE is the natural
logarithm of total assets. MB is the market-to-book ratio. LEV is the leverage ratio. ROA is
the return on assets. REV GWTH is the sales growth from the same quarter last year. Detailed
variable definitions are in Appendix III.

Variables N Mean Std. Dev. 25 Pctl 50 Pctl 75 Pctl

IV 151,048 0.461 0.225 0.296 0.406 0.569

Restatement Variables
DETECT 151,048 0.008 0.090 0.000 0.000 0.000

Earnings and Forecast Variables
REVISION 142,054 -0.222% 0.889% -0.201% -0.029% 0.040%
SUE 142,054 0.017% 1.072% -0.033% 0.042% 0.200%
NEG 142,054 0.186 0.389 0.000 0.000 0.000

Firm Characteristics
SIZE 151,048 7.407 1.826 6.053 7.301 8.616
MB 151,048 1.878 1.743 0.862 1.322 2.225
LEV 151,048 0.223 0.208 0.030 0.189 0.346
ROA 149,108 0.014 0.044 0.005 0.018 0.034
REVGWTH 144,479 0.149 0.426 -0.023 0.075 0.210
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Table 2: Analyst Earnings Forecast Revision and Implied Volatility
This table reports the ordinary least squares (OLS) regression results estimating the relation
between analyst earnings forecast revision and implied volatility. REV ISION is the change
in the analyst consensus EPS forecast for the current quarter surrounding the earnings an-
nouncement of the previous quarter. IV is the implied volatility ten trading days before
earnings announcement. SUE is the earnings surprise of the previous quarter. NEG is an
indicator that denotes negative earnings of the previous quarter. Other controls are described
in Table 1. Detailed variable definitions are in Appendix III. Columns (1) and (2) include
year-quarter fixed effects, and column (3) further includes firm fixed effects. Standard errors
are clustered by year-quarter and firm. T-statistics are reported in parentheses. ***, **, and
* denote significance at the 1%, 5%, and 10% levels, respectively, using two-tailed tests.

(1) (2) (3)
Variables REVISION REVISION REVISION

SUE 0.210*** 0.163*** 0.173***
(11.34) (7.76) (9.36)

IV -0.008*** -0.008*** -0.005***
(-18.88) (-13.60) (-8.29)

IV×SUE 0.088*** 0.106*** 0.086***
(4.18) (4.78) (4.25)

NEG -0.002*** -0.001***
(-9.51) (-5.82)

NEG×SUE -0.001*** -0.001***
(-7.97) (-10.33)

SIZE 0.000 -0.001***
(1.65) (-6.44)

MB 0.001*** 0.000***
(15.12) (10.34)

LEV -0.001*** -0.001
(-3.16) (-1.48)

ROA -0.004* 0.002
(-1.87) (0.65)

REVGWTH 0.001*** 0.001***
(9.57) (7.81)

Observations 142,054 134,873 134,566
Adjusted R-squared 0.175 0.196 0.333
Firm FE No No Yes
Year-Quarter FE Yes Yes Yes
Two-way Clustering Yes Yes Yes
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Table 3: Fraud Detection and Implied Volatility
This table reports the OLS regression results estimating the relation between fraud detection
likelihood and implied volatility. DETECT is an indicator that denotes whether a firm
discloses an accounting restatement that meets at least one of the three conditions: (1) if
the restatement is marked as being fraudulent by Audit Analytics; (2) if the restatement has
received a class-action lawsuit as tracked by Audit Analytics; or (3) if the cumulative restated
amount (scaled by the total assets as of the last restating period) is in the top decile of the
sample. IV is the quarterly average of the daily implied volatility, measured in the quarter
before DETECT . Controls are described in Table 1. Detailed variable definitions are in
Appendix III. Columns (1) and (2) include year-quarter fixed effects, and columns (3) and
(4) further include firm fixed effects. Column (1)-(3) include the full sample, and column (4)
only includes firms with at least one detected restatement from Audit Analytics. Standard
errors are clustered by year-quarter and firm. T-statistics are reported in parentheses. ***,
**, and * denote significance at the 1%, 5%, and 10% levels, respectively, using two-tailed
tests.

(1) (2) (3) (4)
Sample Full Full Full Detected Firms
Variables DETECT DETECT DETECT DETECT

IV 0.010*** 0.014*** 0.007*** 0.012***
(6.16) (6.41) (2.74) (2.96)

SIZE 0.001*** 0.004*** 0.006***
(3.22) (4.01) (4.11)

MB -0.000 -0.000 -0.000
(-0.94) (-0.14) (-0.13)

LEV 0.003* 0.003 0.004
(1.93) (1.21) (1.02)

ROA -0.005 -0.042*** -0.068***
(-0.66) (-3.84) (-3.82)

REVGWTH 0.002* 0.001 0.002
(1.81) (1.40) (1.45)

Observations 151,048 143,252 143,034 86,738
Adjusted R-squared 0.003 0.004 0.022 0.024
Firm FE No No Yes Yes
Year-Quarter FE Yes Yes Yes Yes
Two-way Clustering Yes Yes Yes Yes
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Table 4: Convergence of Implied Volatility
This table the OLS regression results estimating the relation between the change in implied
volatility and the previous level of implied volatility. ∆IV is the change in implied volatil-
ity from quarter q to quarter q + 1. IV Qn is an indicator variable that denotes whether a
firm-quarter falls into the nth-ranked quintile of IV (n=1 to 5) in quarter q, with quintile
five having the highest level of implied volatility. WAV E is an indicator variable that de-
notes a fraud wave in the firm’s industry overlapping quarter q. Controls are described in
Table 1. Detailed variable definitions are in Appendix III. Column (1) includes year-quarter
fixed effects, and columns (2) and (3) further include firm fixed effects. Standard errors are
clustered by year-quarter and firm. T-statistics are reported in parentheses. ***, **, and *
denote significance at the 1%, 5%, and 10% levels, respectively, using two-tailed tests.

(1) (2) (3)
Variables ∆IVq to q+1

IVQ1 0.006* 0.019*** 0.018***
(1.90) (6.93) (5.90)

IVQ2 0.003* 0.009*** 0.008***
(1.89) (5.86) (5.08)

IVQ4 -0.005** -0.011*** -0.010***
(-2.20) (-5.07) (-4.51)

IVQ5 -0.035*** -0.055*** -0.054***
(-7.86) (-11.75) (-11.25)

WAVE×IVQ1 0.007***
(2.80)

WAVE×IVQ2 0.003**
(2.09)

WAVE×IVQ4 -0.007***
(-2.85)

WAVE×IVQ5 -0.011**
(-2.35)

WAVE -0.002
(-1.00)

SIZE -0.001 0.005*** 0.005**
(-1.21) (2.65) (2.64)

MB 0.001** 0.004*** 0.004***
(2.25) (3.69) (3.69)

LEV 0.006*** 0.006* 0.006*
(2.88) (1.77) (1.90)

ROA -0.102*** -0.066*** -0.067***
(-7.04) (-3.73) (-3.76)

REVGWTH 0.003*** 0.001 0.001
(2.72) (1.07) (1.08)

Observations 149,665 149,420 149,420
Adjusted R-squared 0.376 0.394 0.395
Firm Fixed Effects No Yes Yes
Year-Quarter Fixed Effects Yes Yes Yes
Two-way Clustering Yes Yes Yes
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Appendix I: proofs

Proof. of Lemma 1: Note that (13) can be simplified into

(1− δρ) cd∗t
1− d∗t

(
1 +

m∗t q (1− q)
ρ2Φt−1 + σ2

ε

)
= 1 + δρ

(
1− d∗t+1

) m∗t+1q (1− q)
ρ2Φt + σ2

ε +m∗t+1q (1− q)

+ δ2ρ2
(
1− d∗t+1

) (
1− d∗t+2

) m∗t+2q (1− q)
ρ2Φt+1 + σ2

ε +m∗t+2q (1− q)
m∗t+1q (1− q)

ρ2Φt + σ2
ε +m∗t+1q (1− q)

+ ... (34)

By induction, in period t+ 1, conditional on that the regulator fails to detect fraud in period

t, the manager chooses m∗t+1 that satisfies:

(1− δρ) cd∗t+1

1− d∗t+1

(
1 +

m∗t+1q (1− q)
ρ2Φt + σ2

ε

)
= 1 + δρ

(
1− d∗t+2

) m∗t+2q (1− q)
ρ2Φt+1 + σ2

ε +m∗t+2q (1− q)

+ δ2ρ2
(
1− d∗t+2

) (
1− d∗t+3

) m∗t+3q (1− q)
ρ2Φt+2 + σ2

ε +m∗t+3q (1− q)
m∗t+2q (1− q)

ρ2Φt+1 + σ2
ε +m∗t+2q (1− q)

+ ... (35)

Multiplying both sides of equation (35) by δρ
(
1− d∗t+1

) m∗
t+1q(1−q)

ρ2Φt+σ2
ε+m∗

t+1q(1−q)
yields:

δρ (1− δρ) cd∗t+1

m∗t+1q (1− q)
ρ2Φt + σ2

ε

= δρ
(
1− d∗t+1

) m∗t+1q (1− q)
ρ2Φt + σ2

ε +m∗t+1q (1− q)

+ δ2ρ2
(
1− d∗t+2

) (
1− d∗t+1

) m∗t+2q (1− q)
ρ2Φt+1 + σ2

ε +m∗t+2q (1− q)
m∗t+1q (1− q)

ρ2Φt + σ2
ε +m∗t+1q (1− q)

+ δ3ρ3
(
1− d∗t+1

) (
1− d∗t+2

) (
1− d∗t+3

) m∗t+1q (1− q)
ρ2Φt + σ2

ε +m∗t+1q (1− q)

×
m∗t+3q (1− q)

ρ2Φt+2 + σ2
ε +m∗t+3q (1− q)

m∗t+2q (1− q)
ρ2Φt+1 + σ2

ε +m∗t+2q (1− q)

+ ... (36)
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Substituting (36) into (34) yields:

(1− δρ) cd∗t
1− d∗t

(
1 +

m∗t q (1− q)
ρ2Φt−1 + σ2

ε

)
= 1 + δρ (1− δρ) cd∗t+1

m∗t+1q (1− q)
ρ2Φt + σ2

ε

. (37)

Solving (37) for mt yields (14) in the lemma.

Proof. of Lemma 2: We only consider the case in which the detection fails:

Φt = var (st|Ft−1)− var
(
EI [st|Ft] |Ft−1

)
(38)

= var (ρst−1 + εt|Ft−1)− var
(
EI [st|rt, rt−1, ...] |Ft−1

)
= ρ2var (st−1|Ft−1) + σ2

ε − var
(

ρ2var (st−1|Ft−1) + σ2
ε

ρ2var (st−1|Ft−1) + σ2
ε +m∗t q (1− q)

rt|Ft−1

)
= ρ2var (st−1|Ft−1) + σ2

ε −
[

ρ2var (st−1|Ft−1) + σ2
ε

ρ2var (st−1|Ft−1) + σ2
ε +m∗t q (1− q)

]2

var (rt|Ft−1)

=
m∗t q (1− q)

[
ρ2var (st−1|Ft−1) + σ2

ε

]
ρ2var (st−1|Ft−1) + σ2

ε +m∗t q (1− q)

=
m∗t q (1− q)

(
ρ2Φt−1 + σ2

ε

)
ρ2Φt−1 + σ2

ε +m∗t q (1− q)
.

The first equality uses the law of total variance. The third equality uses

EI [st|Ft] = EI [st|Ft−1] +
cov (rt, st|Ft−1)

var (rt|Ft−1)
{rt − E [rt|Ft−1]} (39)

= EI [st|Ft−1] +
ρ2var (st−1|Ft−1) + σ2

ε

ρ2var (st−1|Ft−1) + σ2
ε +m∗t q (1− q)

{rt − E [rt|Ft−1]} ,

where

var (rt|Ft−1) = var (st|Ft−1) +m∗t q (1− q) (40)

= ρ2var (st−1|Ft−1) + σ2
ε +m∗t q (1− q) ,

cov (rt, st|Ft−1) = var (st|Ft−1) (41)

= ρ2var (st−1|Ft−1) + σ2
ε .

The last step uses the definition of Φt−1 ≡ var (st−1|Ft−1).

41



Proof. of lemma 3: Using the law of motion (15), we rewrite the regulator’s payoff (17)

recursively:

Wt (Φt−1) = max
dt
− (1− dt) Φt (d∗t ,Φt−1)− κ

2
(dt − d0)2 + δEI

[ ∞∑
k=t+1

δk−(t+1)
(
− (1− d∗k) Φk −

κ

2
d∗2k

)]

= max
dt
− (1− dt) Φt (d∗t ,Φt−1)− κ

2
(dt − d0)2 + δ [dtWt+1 (0) + (1− dt)Wt+1 (Φt (d∗t ,Φt−1))] ,

(42)

where Φt (d∗t ,Φt−1) is given in (15). Note that the future cumulative level of fraud Φt depends

on the equilibrium detection probability d∗t and not on the actual detection probability dt.

This is because, the manager does not observe the regulator’s detection choice at the time

of choosing manipulation and his manipulation choice only depends on the equilibrium d∗t .

Taking the first-order condition of Wt with respect to dt yields (18) in the main text.

Proof. of Proposition 1: See the main text.

Proof. of Proposition 2: We only derive the manipulation decision by manager 1 as the

manipulation decisions by the other managers can be derived analogously.

Taking the first-order condition of m1t gives that:

c (1− q) d∗1t

=
1− d∗1t
1− δρ

ρ2Φ1t−1 + σ2
ε

ρ2Φ1t−1 + σ2
ε +m∗1tq (1− q)

(1− q)

+
(1− d∗1t) δρ

1− δρ
ρ2Φ1t−1 + σ2

ε

ρ2Φ1t−1 + σ2
ε +m∗1tq (1− q)

(1− q)

× EΦ2t,Φ3t

[(
1− d∗1t+1

) m∗1t+1q (1− q)
ρ2Φ1t + σ2

ε +m∗1t+1q (1− q)

]
+

(1− d∗1t) δ2ρ2

1− δρ
ρ2Φ1t−1 + σ2

ε

ρ2Φ1t−1 + σ2
ε +m∗1tq (1− q)

(1− q)

× EΦ2t,Φ3t,Φ2t+1,Φ3t+1

[(
1− d∗1t+1

) (
1− d∗1t+2

) m∗1t+2q (1− q)
ρ2Φ1t+1 + σ2

ε +m∗1t+2q (1− q)
m∗1t+1q (1− q)

ρ2Φ1t + σ2
ε +m∗1t+1q (1− q)

]
+ ... (43)

Note that we need to take expectations over {Φ2t,Φ3t} because
{
d∗1t+1,m

∗
1t+1

}
depend on
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{Φ2t,Φ3t}. Φ2t and Φ3t are random because they can be either 0 or positive, depending on

whether the regulator detects fraud at the two firms.

Equation (43) can be simplified into

(1− δρ) cd∗1t
1− d∗1t

(
1 +

m∗1tq (1− q)
ρ2Φ1t−1 + σ2

ε

)
= 1 + δρEΦ2t,Φ3t

[(
1− d∗1t+1

) m∗1t+1q (1− q)
ρ2Φ1t + σ2

ε +m∗1t+1q (1− q)

]
+ δ2ρ2EΦ2t,Φ3t,Φ2t+1,Φ3t+1

[(
1− d∗1t+1

) (
1− d∗1t+2

) m∗1t+2q (1− q)
ρ2Φ1t+1 + σ2

ε +m∗1t+2q (1− q)
m∗1t+1q (1− q)

ρ2Φ1t + σ2
ε +m∗1t+1q (1− q)

]
+ ... (44)

There are four possible cases of {Φ2t,Φ3t} in period t+1. For each realization of {Φ2t,Φ3t},

by induction, the first-order condition of m1t+1 is given by:

(1− δρ) cd∗1t+1

1− d∗1t+1

(
1 +

m∗1t+1q (1− q)
ρ2Φ1t + σ2

ε

)
= 1+δρEΦ2t+1,Φ3t+1

[(
1− d∗1t+2

) m∗1t+2q (1− q)
ρ2Φ1t+1 + σ2

ε +m∗1t+2q (1− q)

]
+...

(45)

Multiplying both sides by
(
1− d∗1t+1

) m∗
1t+1q(1−q)

ρ2Φ1t+σ2
ε+m∗

1t+1q(1−q)
gives that:

(1− δρ) cd∗1t+1

m∗1t+1q (1− q)
ρ2Φ1t + σ2

ε

=
(
1− d∗1t+1

) m∗1t+1q (1− q)
ρ2Φ1t + σ2

ε +m∗1t+1q (1− q)

+ δρEΦ2t+1,Φ3t+1

[(
1− d∗1t+1

) (
1− d∗1t+2

) m∗1t+1q (1− q)
ρ2Φ1t + σ2

ε +m∗1t+1q (1− q)
m∗1t+2q (1− q)

ρ2Φ1t+1 + σ2
ε +m∗1t+2q (1− q)

]
+ ... (46)
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Taking the expectation over {Φ2t,Φ3t} gives that:

c (1− δρ) q (1− q)
ρ2Φ1t + σ2

ε

EΦ2t,Φ3t

[
d∗1t+1m

∗
1t+1

]
= EΦ2t,Φ3t

[(
1− d∗1t+1

) m∗1t+1q (1− q)
ρ2Φ1t + σ2

ε +m∗1t+1q (1− q)

]
+ δρEΦ2t,Φ3t,Φ2t+1,Φ3t+1

[(
1− d∗1t+1

) (
1− d∗1t+2

) m∗1t+1q (1− q)
ρ2Φ1t + σ2

ε +m∗1t+1q (1− q)
m∗1t+2q (1− q)

ρ2Φ1t+1 + σ2
ε +m∗1t+2q (1− q)

]
+ ... (47)

Substituting (47) into (44) yields:

(1− δρ) cd∗1t
1− d∗1t

(
1 +

m∗1tq (1− q)
ρ2Φ1t−1 + σ2

ε

)
= 1 +

cδρ (1− δρ) q (1− q)
ρ2Φ1t + σ2

ε

EΦ2t,Φ3t

[
d∗1t+1m

∗
1t+1

]
. (48)

Solving for m∗1t gives that

m∗1t =
ρ2Φ1t−1 + σ2

ε

q (1− q)

[
1− d∗1t
cd∗1t

(
1

1− δρ
+ δρcq (1− q)

EΦ2t,Φ3t

[
m∗1t+1d

∗
1t+1

]
ρ2Φ1t + σ2

ε

)]
− 1, (49)

where

EΦ2t,Φ3t

[
d∗1t+1m

∗
1t+1

]
= (1− d∗2t) (1− d∗3t)m∗1t+1 (Φ1t,Φ2t,Φ3t) d

∗
1t+1 (Φ1t,Φ2t,Φ3t)

+ d∗2t (1− d∗3t)m∗1t+1 (Φ1t, 0,Φ3t) d
∗
1t+1 (Φ1t, 0,Φ3t)

+ (1− d∗2t) d∗3tm∗1t+1 (Φ1t,Φ2t, 0) d∗1t+1 (Φ1t,Φ2t, 0)

+ d∗2td
∗
3tm

∗
1t+1 (Φ1t, 0, 0) d∗1t+1 (Φ1t, 0, 0) . (50)

Analogously, dropping the time subscript, the manipulation choice m∗i by the manager at

firm i can be derived as:

m∗i =
ρ2Φi + σ2

ε

q (1− q)

(
1− d∗i
cd∗i

(
1

1− δρ
+
cδρq (1− q)
ρ2Φ′i + σ2

ε

× E
[
m′id

′
i

])
− 1

)
, (51)
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where

E
[
m′1d

′
1

]
= (1− d∗2) (1− d∗3)m∗1

(
Φ′1,Φ

′
2,Φ

′
3

)
d∗1
(
Φ′1,Φ

′
2,Φ

′
3

)
+d∗2 (1− d∗3)m∗1

(
Φ′1, 0,Φ

′
3

)
d∗1
(
Φ′1, 0,Φ

′
3

)
+ (1− d∗2) d∗3m

∗
1

(
Φ′1,Φ

′
2, 0
)
d∗1
(
Φ′1,Φ

′
2, 0
)

+d∗2d
∗
3m
∗
1

(
Φ′1, 0, 0

)
d∗1
(
Φ′1, 0, 0

)
, (52)

E
[
m′2d

′
2

]
= (1− d∗1) (1− d∗3)m∗2

(
Φ′1,Φ

′
2,Φ

′
3

)
d∗2
(
Φ′1,Φ

′
2,Φ

′
3

)
+d∗1 (1− d∗3)m∗2

(
0,Φ′2,Φ

′
3

)
d∗2
(
0,Φ′2,Φ

′
3

)
+ (1− d∗1) d∗3m

∗
2

(
Φ′1,Φ

′
2, 0
)
d∗2
(
Φ′1,Φ

′
2, 0
)

+d∗1d
∗
3m
∗
2

(
0,Φ′2, 0

)
d∗2
(
0,Φ′2, 0

)
, (53)

E
[
m′3d

′
3

]
= (1− d∗1) (1− d∗2)m∗3

(
Φ′1,Φ

′
2,Φ

′
3

)
d∗3
(
Φ′1,Φ

′
2,Φ

′
3

)
+d∗1 (1− d∗2)m∗3

(
0,Φ′2,Φ

′
3

)
d∗3
(
0,Φ′2,Φ

′
3

)
+ (1− d∗1) d∗2m

∗
3

(
Φ′1, 0,Φ

′
3

)
d∗3
(
Φ′1, 0,Φ

′
3

)
+d∗1d

∗
2m
∗
3

(
0, 0,Φ′3

)
d∗3
(
0, 0,Φ′3

)
. (54)

Dropping the time subscript, the regulator’s objective function can be rewritten recur-
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sively as:

W (Φ1,Φ2,Φ3) = max
d1,d2,d3

− (1− d1) (1− d2) (1− d3)
[
Φ′1 + Φ′2 + Φ′3 − δW

(
Φ′1,Φ

′
2,Φ

′
3

)]
− (1− d1) d2 (1− d3)

[
Φ′1 + Φ′3 − δW

(
Φ′1, 0,Φ

′
3

)]
− (1− d1) (1− d2) d3

[
Φ′1 + Φ′2 − δW

(
Φ′1,Φ

′
2, 0
)]

− (1− d1) d2d3

[
Φ′1 − δW

(
Φ′1, 0, 0

)]
− d1 (1− d2) (1− d3)

[
Φ′2 + Φ′3 − δW

(
0,Φ′2,Φ

′
3

)]
− d1d2 (1− d3)

[
Φ′3 − δW

(
0, 0,Φ′3

)]
− d1 (1− d2) d3

[
Φ′2 − δW

(
0,Φ′2, 0

)]
+ δd1d2d3W (0, 0, 0)− κ

2
(d1 + d2 + d3 − 3d0)2 , (55)

where

Φ′i ≡
m∗i q (1− q)

(
ρ2Φi + σ2

ε

)
ρ2Φi + σ2

ε +m∗i q (1− q)
. (56)

Taking the F.O.C. yields:

d∗1 =
1

κ
{Φ′1 + δ (1− d∗2) (1− d∗3)

[
W
(
0,Φ′2,Φ

′
3

)
−W

(
Φ′1,Φ

′
2,Φ

′
3

)]
+ δ (1− d∗2) d∗3

[
W
(
0,Φ′2, 0

)
−W

(
Φ′1,Φ

′
2, 0
)]

+ δd∗2 (1− d∗3)
[
W
(
0, 0,Φ′3

)
−W

(
Φ′1, 0,Φ

′
3

)]
+ δd∗2d

∗
3

[
W (0, 0, 0)−W

(
Φ′1, 0, 0

)]
} − (d∗2 + d∗3 − 3d0) , (57)

d∗2 =
1

κ
{Φ′2 + δ (1− d∗1) (1− d∗3)

[
W
(
Φ′1, 0,Φ

′
3

)
−W

(
Φ′1,Φ

′
2,Φ

′
3

)]
+ δ (1− d∗1) d∗3

[
W
(
Φ′1, 0, 0

)
−W

(
Φ′1,Φ

′
2, 0
)]

+ δd∗1 (1− d∗3)
[
W
(
0, 0,Φ′3

)
−W

(
0,Φ′2,Φ

′
3

)]
+ δd∗1d

∗
3

[
W (0, 0, 0)−W

(
0,Φ′2, 0

)]
} − (d∗1 + d∗3 − 3d0) , (58)
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d∗3 =
1

κ
{Φ′3 + δ (1− d∗1) (1− d∗2)

[
W
(
Φ′1,Φ

′
2, 0
)
−W

(
Φ′1,Φ

′
2,Φ

′
3

)]
+ δ (1− d∗1) d∗2

[
W
(
Φ′1, 0, 0

)
−W

(
Φ′1, 0,Φ

′
3

)]
+ δd∗1 (1− d∗2)

[
W
(
0,Φ′2, 0

)
−W

(
0,Φ′2,Φ

′
3

)]
+ δd∗1d

∗
2

[
W (0, 0, 0)−W

(
0, 0,Φ′3

)]
} − (d∗1 + d∗2 − 3d0) . (59)
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Appendix II: special case of δ = 0

In this appendix, we consider a special case of our model with three firms and δ = 0. In this

special case, we are able to obtain a closed-form solution of our model that is consistent with

the numerical results shown in the main text. When δ = 0, dropping the time subscript, the

regulator’s objective function becomes:

W
(
{Φi}i∈{1,2,3}

)
= −

3∑
i=1

(1− di) Φ′i −
κ

2
(

3∑
i=1

(di − d0))2. (60)

In addition, using equation (26) at δ = 0, we can simplify the law of motion for Φi (as in

(15)) into:

Φ′i ≡
(
ρ2Φi + σ2

ε

)(
1− cd∗i

1− d∗i

)
. (61)

Taking the first-order condition gives that

∂W

∂di
= Φ′i − κ(

3∑
i=1

(di − d0)). (62)

Without loss of generality, we assume that Φ1 ≥ Φ2 ≥ Φ3. This further implies that ρ2Φ1 +

σ2
ε ≥ ρ2Φ2 + σ2

ε ≥ ρ2Φ3 + σ2
ε .

Consider three cases. First, suppose that

(
ρ2Φ2 + σ2

ε

)(
1− cd0

1− d0

)
<
(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
, (63)

that is, Φ1 is much larger than Φ2. We will restate condition (63) in terms of exogenous

parameters after solving the equilibrium. We now conjecture the equilibrium is that d∗2 =

d∗3 = d0 and d∗1 > d0, where d∗1 solves:

Φ′1 =
(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
= κ (d∗1 − d0) . (64)

To verify that this is indeed an equilibrium, note first that the solution to (64) is unique

because the left-hand side is decreasing in d∗1 whereas the right-hand side is increasing in d∗1.
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In addition, by the implicit function theorem, since the left-hand side is increasing in Φ1, d∗1

is increasing in Φ1. Next, using the first-order condition (64), we can rewrite the condition

(63) as:

κ (d∗1 − d0) = Φ′1 =
(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
>
(
ρ2Φ2 + σ2

ε

)(
1− cd0

1− d0

)
. (65)

Since d∗1 is increasing in Φ1, the condition (63) holds if and only if Φ1 is sufficiently large

and/or Φ2 is sufficiently small. In other words, we can rewrite the condition (63) as

Φ1 > H (Φ2) , (66)

where H (·) is some given increasing function. Finally, we verify that d∗2 = d∗3 = d0. This is

because, at d2 = d3 = d0, the first-order condition for d2 is always negative, i.e.,

∂W

∂d2
= Φ′2 − κ (d∗1 − d0) (67)

=
(
ρ2Φ2 + σ2

ε

)(
1− cd0

1− d0

)
− κ (d∗1 − d0)

<
(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
− κ (d∗1 − d0)

= 0.

The third step uses (63). The last step uses (64).

Second, suppose that Φ1 ≤ H (Φ2) and

(
ρ2Φ3 + σ2

ε

)(
1− cd0

1− d0

)
<
(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
, (68)

that is, Φ1 and Φ2 are of similar sizes but both are much larger than Φ3. We will restate

condition (68) in terms of exogenous parameters after solving the equilibrium. We now

conjecture the equilibrium is that d∗3 = d0, d∗1 > d0 and d∗2 > d0, where the pair of {d∗1, d∗2}
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solves:

Φ′1 =
(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
= κ (D∗ − 2d0) , (69)

Φ′2 =
(
ρ2Φ2 + σ2

ε

)(
1− cd∗2

1− d∗2

)
= κ (D∗ − 2d0) , (70)

where D∗ = d∗1+d∗2. To verify that this is indeed an equilibrium, note that, since the left-hand

side of the two first-order conditions of {d∗1, d∗2} are increasing in Φ1 and Φ2, respectively,

applying the implicit function theorem gives that D∗ is strictly increasing in Φ1 and Φ2.

Using the first-order condition of d1, we can rewrite the condition (68) as:

κ (D∗ − 2d0) = Φ′1 =
(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
>
(
ρ2Φ3 + σ2

ε

)(
1− cd0

1− d0

)
. (71)

Since D∗ is increasing in Φ1 and Φ2, the condition (68) holds if and only if either Φ1 or Φ2

is sufficiently large and/or Φ3 is sufficiently small. In other words, we can rewrite (68) as

L (Φ1,Φ2) > Φ3, (72)

where L (·, ·) is some given increasing function in both Φ1 and Φ2. Finally, we verify that

d∗3 = d0. This is because, at d3 = d0, the first-order condition for d3 is always negative, i.e.,

∂W

∂d3
= Φ′3 − κ (d∗1 + d∗2 − 2d0) (73)

=
(
ρ2Φ3 + σ2

ε

)(
1− cd0

1− d0

)
− κ (d∗1 + d∗2 − 2d0)

<
(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
− κ (d∗1 + d∗2 − 2d0)

= 0.

Lastly, suppose that Φ1 ≤ H (Φ2) and L (Φ1,Φ2) ≤ Φ3. That is, Φ1, Φ2 and Φ3 are of

similar sizes. In this case, the equilibrium can only be interior such that the equilibrium is a
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triplet of {d∗1, d∗2, d∗3} > 0, which solve:

Φ′1 =
(
ρ2Φ1 + σ2

ε

)(
1− cd∗1

1− d∗1

)
= κ (d∗1 + d∗2 + d∗3 − 3d0) , (74)

Φ′2 =
(
ρ2Φ2 + σ2

ε

)(
1− cd∗2

1− d∗2

)
= κ (d∗1 + d∗2 + d∗3 − 3d0) , (75)

Φ′3 =
(
ρ2Φ3 + σ2

ε

)(
1− cd∗3

1− d∗3

)
= κ (d∗1 + d∗2 + d∗3 − 3d0) . (76)
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Appendix III: variable definitions

IVq: in equation (29), IVq is the daily implied volatility of the 90-day standardized option

measured 10 trading days before the earnings announcement of q−1 (made in q). In equation

(30)-(32), IVq is the quarterly average of the daily implied volatility of the 90-day standardized

option in quarter q. IV 2
q is the squared term of IVq. .

REV ISIONq: the EPS consensus forecast for quarter q after earnings announcement (EA)

of quarter q − 1 (made in q) minus the corresponding EPS forecast before EA, scaled by the

stock price two days before EA. Pre-EA consensus forecast is the latest forecast for quarter q

issued at least two days before EA of quarter q−1 (announced in q), averaged cross analysts.

Post-EA consensus forecast is the first forecast for quarter q issued within the first 30 days

after EA of quarter q − 1 (announced in q), averaged cross analysts.

SUEq: reported EPS of quarter q − 1 (announced in q) minus the pre-EA EPS consensus

forecast, scaled by the stock price two days before EA. Pre-EA consensus forecast is the latest

forecast for quarter q − 1 issued at least two days before EA of quarter q − 1, averaged cross

analysts.

NEGq: an indicator variable that equals one if the reported EPS of quarter q−1 (announced

in q) is negative and zero otherwise.

SIZEq−1: the natural logarithm of total assets at the end of q − 1.

MBq−1: market value of equity plus book value of debt, divided by book value of assets, at

the end of q − 1.

LEVq−1: book value of total debt divided by book value of total assets, at the end of q− 1.

ROAq−1: operating income of quarter q − 1 divided by book value total assets at the end of

q − 2.

REV GWTHq−1: sales revenue of quarter q − 1 divided by sales revenues of quarter q − 5
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(i.e., one-year lag) minus one, in percentage points.

DETECTq+1: an indicator variable that equals one if a firm has a restatement disclosure

that meets at least one of the following three conditions in quarter q+ 1 and zero otherwise:

(1) if the restatement is marked as being fraudulent by Audit Analytics; (2) if the restatement

has received a class-action lawsuit as tracked by Audit Analytics; or (3) if the cumulative

restated amount (scaled by the total assets as of the last restating quarter) is in the top decile

of the sample.

IV Qnq: an indicator variable that equals one if a firm-quarter falls into the nth-ranked

quintile of IV (n=1 to 5) and zero otherwise, with a higher-ranked quintile representing the

subsample with a higher level of average daily implied volatility in quarter q.

WAV Eq: an indicator variable that equals one if an industry-quarter’s fraud detection rate

exceeds the 90th percentile of the empirical distribution based on the industry’s fraud de-

tection rates over all quarters in the sample. The fraud detection rate of an industry i in a

given quarter q is the number of firms with restatement announcement in industry-quarter

j, q divided by the number of firms in industry-quarter j, q. The industry classification is

based on the Global Industry Classification Standard (GICS) 4-digit industry groups.
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