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In Search of a Unicorn

Abstract: Searching for investment opportunities is one of the fundamental responsibilities
of corporate managers. This paper studies a dynamic agency model where investors contract
with a manager to find opportunities (“targets”) arriving stochastically. The model has two
novel features frequently observed in practice: First, investment targets arrive at different
levels of quality that are only observable by the manager. Second, once the investment
target is chosen, the manager is put in charge of the ensuing operations and can continue
to utilize her private information about the target to extract rents. These novel features
imply an interaction between adverse selection and moral hazard problems. We find that
the optimal contract has a progressively lower threshold for investment over time and leads to
overinvestment. Our model generates several empirical predictions regarding the strategies
and returns of mergers and acquisitions, hedge fund activism, venture capital investing, and
special purpose acquisition companies.

JEL classification: G32, D86, M11

Keywords: dynamic agency, moral hazard, adverse selection, optimal contracting, merg-
ers & acquisitions, hedge fund activism, venture capital funds, special purpose acquisition
company
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1 Introduction

Identifying investment opportunities is an important managerial role in modern businesses.

CEOs pursue acquisition opportunities to maintain corporate growth. Managers of activist

hedge funds seek undervalued firms for intervention. General partners of venture capital

funds look for promising startups to invests in. Sponsors of special purpose acquisition

companies hunt for the most valuable private firms—the “unicorns”—to merge with. Tra-

ditionally, the processes above are studied in a random discovery framework with moral

hazard as the main friction. In this framework, the search requires unobservable effort from

the manager, who is also privy to the search results (e.g., Green and Taylor, 2016). When the

manager discloses the arrival of a search target, only the timing of such disclosure matters,

and the manager’s role ends.

We study the search for valuable investment opportunities in a dynamic agency model

that incorporates two novel features. First, besides the timing of arrival, the quality of

the investment opportunity also matters. Because the manager is privy to this quality,

an additional agency friction—adverse selection—arises and interacts with the conventional

moral hazard problem during the search process. Second, the role of the manager does not

end with the disclosure of the investment opportunity. These two features are commonly

observed in practice where investment opportunities often differ in terms of their potential

and managers handle the ensuing operations related to the undertaken investments. For

example, CEOs of the acquirers operate the combined firms; managers of activist hedge

funds oversee the revamping of the undervalued targets; and venture capitalists and special

purpose acquisition companies play critical roles in the growth and development of their

investments. In these situations, managers can take advantage of their private information

and continue to extract personal benefits after the search has concluded, which in turn affects

the investors’ return from the search, the type of opportunities they are willing to invest in,

and the overall investment efficiency.

Our model has two distinct stages: in the first (search) stage, a group of investors contract

with a manager (“she”) to find business opportunities (“targets”) that arrive randomly over

time via a Poisson process only if the manager exerts effort. The arrival and the quality of
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the target are privately observed by the manager. Investors decide whether to end the search

and begin production based on the manager’s report about target arrival and quality. In

the second (production) stage, the manager generates an output that depends on the target

quality. The investors’ objective is to design the optimal contract that maximizes their total

return net of the manager’s compensation and provides incentives for the manager to exert

the search effort and to report all private information truthfully in both stages.

Absent agency frictions, the investors’ first-best strategy is to invest in the first target that

clears a sufficiently high constant bar of quality (threshold) and never abandon the search.

The information frictions, however, create moral hazard and adverse selection problems that

interact with each other. In the production stage, where productivity is privately observed

by the manager, the incentives for truthful reporting are provided in the form of excess

compensation, known as the manager’s information rent. This rent is increasing in the

quality of the target, which determines the expected return received by investors from a

given investment policy. In the search stage, incentives are provided in the form of promised

utility. The investors specify in the contract their investment policy and the reward for

reporting the arrival of suitable targets.

As in the first-best, the optimal investment policy when agency frictions are present takes

the form of a threshold. Early on in the search stage, the investment threshold is high, and

the manager is just indifferent between exerting the search effort and shirking to consume the

search resources for private benefits. If the manager does not report the arrival of a target,

her promised utility drifts down to provide incentives for her to maintain the search effort.

As a result, the optimal cutoff declines, and the manager begins to strictly prefer exerting

the effort to conduct the search. The decline continues until all targets regardless of their

quality trigger the start of production. If a target is still not found after sufficiently long

search, the manager’s contract is terminated without pay. Critically, the optimal investment

threshold induced by the agency frictions is always below the first-best level. That is, there

is overinvestment.

We also extend our analysis by incorporating dynamics in the production stage. In this

model variation, the target quality determines only the initial productivity, which evolves

over time afterward subject to time-varying shocks. The evolution path of productivity
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is privately observed by the manager and the investors dynamically adjust their production

policies based on the manager’s reported productivity. The main results remain robust. This

extension provides a unified framework to jointly study two important agency frictions—

dynamic adverse selection and dynamic moral hazard.

The main results of our model and their comparative statics generate empirically testable

predictions regarding mergers and acquisitions (M&A), hedge fund activism (HFA), venture

capitalists (VC), and special purpose acquisition companies (SPAC), where evidence for

overinvestment abounds.1 Prior literature (e.g., Shleifer and Vishny, 1997; Franzoni, 2009;

Malenko, 2019; Gregor and Michaeli, 2020, 2022) often attributes overinvestment to the

manager’s empire-building preferences. This paper offers an alternative explanation based

on optimal contracting under agency frictions. We expect that overinvestment is correlated

with the incentives’ power of the acquirer, activist fund managers, VC executives or the

SPAC management team. The model also predicts that overinvestment and average return

from the above-mentioned activities are positively associated with (i) number of firms, fre-

quency of deals and average returns in these markets; (ii) geographical proximity, executive

connections, stock liquidity, analyst coverage, and institutional holdings of the targets. An-

other prediction is that the returns in these markets should be more dispersed when there

are more targets available or when the manager’s incentives are low-powered.

2 Related literature

Our paper belongs to the literature studying dynamic contracting models with Poisson jumps

(e.g., Biais, Mariotti, Rochet, and Villeneuve, 2010, Hoffmann and Pfeil, 2010, Piskorski and

Tchistyi, 2010, DeMarzo, Fishman, He, and Wang, 2012, DeMarzo, Livdan, and Tchistyi,

2013, Myerson, 2015, Sun and Tian, 2018, Rivera, 2020, and Feng, 2021). The most closely-

related studies are Green and Taylor (2016), Curello and Sinander (2021), Madsen (2022),

and Mayer (2022). These studies assume that through effort, the agent can observe a private

signal that is valuable to the principal. The optimal contract provides incentives for the agent

to exert the effort to uncover the signal and to report it as soon as it arrives. Our paper

1See, e.g, Andrade, Mitchell, and Stafford (2001), Eckbo (2008), Gahng, Ritter, and Zhang (2022), etc.
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differs from these studies in two dimensions. First, in addition to the arrival time, the agent

(manager in our case) also privately observes the quality of the private information and

must be incentivized to truthfully convey both the arrival and the quality to the principal

(investors in our case). Second, the contracting relationship does not end with the disclosure

of the private information. The value of the information manifests in a production process,

during which the manager can continue to utilize her private information to extract rents.

The introduction of these new dimensions creates an adverse selection problem with

unknown agent types (i.e., the quality of the target the agent possesses) in addition to the

dynamic moral hazard problem. Cvitanić, Wan, and Yang (2013) studies an extension of

the dynamic contracting problem in DeMarzo and Sannikov (2006) by assuming that one

of the manager’s characteristics (such as the private utility she enjoys if she diverts cash

flows) is her private information and the investors design a screening contract to infer that

information before hiring the manager. This turns out to be analytically difficult, as the

contract must always keep track of at least two state variables: one for each type of the

manager if she accepts the contract. Consequently, the solution in Cvitanić, Wan, and Yang

(2013) relies mainly on numerical simulation. In contrast, our model assumes that the adverse

selection arises after the manager is hired, which allows us to separate adverse selection from

moral hazard. Crucially, the screening of the manager’s private information can be made

relatively independent of the manager’s moral hazard problem, which substantially reduces

the technical hurdles in deriving the optimal contract. Meanwhile, there is still a meaningful

interaction between the two frictions because the design of the screening contract affects the

dynamics of the incentives during the search stage. Thus, the model yields different but

practically relevant predictions than those in models with either only adverse selection or

only moral hazard, which we discuss in Section 6.

Meanwhile, Varas (2018) studies a dynamic model of managerial short-termism in which

the manager’s private information is binary: the manager can either spend effort and time

to discover a value-enhancing good project, or pass off a value-destroying bad project which

is always available. The investors, who do not observe the manager’s effort nor the quality of

the project, use a contract with decreasing compensation as the incentive for effort. However,

to prevent short-termism, the contract holds the compensation stationary at some point and
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switches the incentive to random termination. In the equilibrium, the bad project is never

invested, i.e., short-termism never occurs. Our model differs in that there is a continuum of

private information: the quality of the investment target observable only to the manager.

Thus, the optimal contract provides time-varying incentives both for the manager’s search

effort and for the truthful reporting of her private information at different point in time.

This results in the investors in our model becoming endogenously more “short-termist,” as

they progressively permit the investment of lower-quality targets over time. Also, while the

contractual relationship in Varas (2018) continues after the investment project is chosen, the

manager takes no action in that period and cannot influence the project output. In contrast,

the manager in our model is also in charge of production from the chosen project and can

manipulate project output to extract more rents.

More broadly speaking, our paper is also related to the literature on mechanism design in

which the agent can take private actions.2 For example, Krähmer and Strausz (2011) and Liu

and Lu (2018) study the optimal procurement policy in two-period models where the agent

is able to influence the principal’s screening outcome in the second period through private

actions in the first period. The agent makes only one report about some private information

and the contract either moves on to the next stage (if the report clears a pre-specified hurdle)

or terminates altogether. In comparison, our search stage is fully dynamic and thus features

endogenous termination and stochastic transition time to the second stage. The agent is

allowed to make repeated reports about the arrival and quality of the targets until either

transition or termination occurs. The dynamics also imply that the criterion for transition

is type-varying as the result of previous reports. Related, Halac, Kartik, and Liu (2016)

studies experiments in a learning model in which the agent’s private effort is a necessary

(but not sufficient) condition for success. The adverse selection of the underlying success

likelihood results in a screening contract with different endogenous deadlines at which the

contract is terminated if success has not been achieved. Our model shares the similarities that

“success” (the arrival of an investment target) is stochastic and only possible if the manager

exerts effort. However, our model differs in that “success” carries the additional information

2In addition to the mechanism design studies discussed in detail, see also Sung (2005), Garrett and Pavan
(2012, 2015), Gershkov and Perry (2012), Chassang (2013), Gary-Bobo and Trannoy (2015), Gershkov, Li,
and Schweinzer (2016), Duggan (2017), Shan (2017), Che, Iossa, and Rey (2021).
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about the quality and thus requires different levels of incentives under the optimal screening

contract. This additional dimension of the agent’s private information also implies that the

definition of “success” in our model is time-varying: earlier targets must clear a higher hurdle

in order to successfully trigger investment.

In terms of empirical predictions, our paper complements recent literature that also fea-

tures overinvestment as a result of dynamic agency frictions with different mechanisms, e.g.,

Bolton, Wang, and Yang (2019) and Ai, Kiku, Li, and Tong (2021) with limited commit-

ment, Gryglewicz, Mayer, and Morellec (2020) with correlated short-run and long-run effort,

Szydlowski (2019) with multi-tasking, Gryglewicz and Hartman-Glaser (2020) with real op-

tions, and Feng (2022) with persistent effect of moral hazard. All of these studies assume

the output process is driven by Brownian shocks and the level of investment can be adjusted

constantly and smoothly. Consequently, their models apply more naturally to operational

investments such as capital expenditure or research and development expenses. In contrast,

our paper considers a setting in which the investment targets arrive via a Poisson process

if the manager exerts a sufficient search effort. Our theory is therefore more applicable to

lumpy investments such as M&A, HFA, VC and SPAC.

3 Economic Setting

Below we first describe the model ingredients (in Section 3.1) and then discuss some of our

assumptions (in Section 3.2).

3.1 Model Description

We consider a group of investors contracting with a manager (“she”). The investors have

deep pockets while the manager is protected by limited liability. Both parties are risk-

neutral with no discounting, and their outside options are normalized to 0. There are two

stages—search and production—and time is continuous.

Search stage. During the search stage, the manager is tasked with finding an invest-

ment target (e.g., a promising startup for acquisition or an undervalued firm for activism

intervention). The search incurs a cost δ that must be financed by the investors. Each
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target is characterized by its quality θ, which follows a Pareto distribution with cumulative

distribution function F (θ) = 1−
(
θκmin

θκ

)
and probability density function f(θ) =

κθκmin

θκ+1 . The

distribution scale parameter is positive, θmin > 0, and the shape parameter is sufficiently

large, κ > 2.

There are two agency frictions during this stage. First, the manager controls her search

effort, which is unobservable to the investors. If the manager exerts the effort, the targets

arrive via a Poisson jump process Nt with intensity λ. If the manager shirks, she obtains

a private benefit ρ, and no target arrives. Here ρ represents the perks and benefits from

actions that are enjoyable to the manager personally but do not contribute to the discovery

of investment targets, such as excessive traveling, spending the firm/fund’s resources to

build personal reputation or network, and hiring (unqualified) friends and family members.

We assume ρ < δ, so shirking is socially inefficient. The second friction is that only the

manager observes the arrival of targets and their quality θ. The investors decide whether to

invest in the target based on information reported by the manager. The length of this stage

is endogenous: the search ends either when the investors invest and move on to the next

(production) stage, or when the contract is terminated.

Production stage. During the production stage, the manager generates output from

the target chosen by the investors during the previous stage. The production technology is

y(θ, e) = θe, where e is the manager’s unobservable production effort exerted at a quadratic

personal cost h(e) = e2/2. Similar to the first stage, the target quality is privately observed

only by the manager. The output y, however, is observable by the investors. This implies that

the main agency friction in the production stage is adverse selection, because a manager with

a low-quality target can always mimic the output of a manager with a high-quality target

(or vice versa) by exerting higher (lower) effort. The unobservable effort in this stage only

provides cover for the manager so that the true quality of the target cannot be inferred with

certainty based on the observable output. In contrast, the agency frictions in the first stage

involve both moral hazard and adverse selection, because the manager can shirk and/or lie

about the target arrival and/or quality.

Contract. A contract C between the investors and the manager consists of the investors’

investment and production policies, and the associated compensation to the manager. During
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the search stage, the contract specifies the set of targets that will be invested in, the reward

for the manager for announcing the arrival of the target, and the condition under which the

contract is terminated. During the production stage, the contract specifies how the manager

will be compensated based on the observed production. A contract is incentive-compatible

if the manager finds it optimal to always exert the desired search effort and announce her

private information truthfully.

3.2 Discussion of Assumptions

We now discuss in detail the roles of several simplifying assumptions of the model:

1. Discounting. Our model assumes that there is no discounting for the investors and the

manager. This assumption is common among models in which the arrival of information

follows a Poisson process (e.g., Green and Taylor, 2016; Mayer, 2022). Discounting

implies investors prefer earlier resolution, which distorts their investment threshold

downward. Except for this result, discounting usually adds little economic intuition in

these types of models but a substantial degree of algebraic complexity.

2. Continuous time. The assumption that time is continuous allows for more elegant

analysis. A setting with discrete time leads to several analytical complications (such

as the need for randomized termination) but does not qualitatively change our results.

3. Pareto distribution. We assume that the target quality θ follows a Pareto distribution

because of its broad applications in economics and its analytical convenience. In par-

ticular, this distribution belongs to the power-law family and is descriptive of many

economic variables and activities in practice (e.g, Gabaix and Landier, 2008). Further-

more, the distribution has two analytical advantages. First, the inverse hazard rate

[1 − F (θ)]/f(θ) = θ/κ is a linear function of θ. This significantly simplifies the proof

of Proposition 1 and all subsequent analysis. Second, a Pareto distribution truncated

from below at an arbitrary point x > θmin is also a Pareto distribution with the same

shape parameter and the new scale parameter x. This is vital for tractability. The re-

quirement κ > 2 is technical and implies a sufficiently thin right tail of the distribution
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to ensure a finite variance of θ and a finite solution to the first-best (see footnote 4 for

more details)

4. Production technology. Our model assumes that the production technology is y(e, θ) =

eθ. This implies that managerial effort and project quality are perfect complements

and achieves two useful simplifications. First, in equilibrium, production effort is never

shut down regardless of target quality.3 Second, the manager cannot generate output

without a target. Consequently, while the manager can misreport the quality of the

arriving targets, she cannot fabricate their existence. This assumption is intuitive in the

context of M&A, HFA, VC, and SPAC, because the success of the merger/acquisition or

the intervention require cooperation from the targets. While managers of the acquiring

firm or the activist/VC fund can exaggerate the true value of the targets to their

investors, they are usually not able to create phony targets.

In summary, the assumptions discussed above facilitate tractability and are not crucial

for our results. The predictions of the model remain qualitatively unchanged if we relax

any of these assumptions (e.g., switch to discrete time, allow discounting, use an alternative

distribution for θ and/or production function for y).

4 First Best Benchmark

If all information is public, the first-best effort and output in the production stage will

maximize the social surplus from production. i.e.,

max
e

y − h(e) = θe− h(e). (1)

The first-best effort and output,

eFB = θ, (2)

yFB = θ2, (3)

3In contrast, if the production technology is linear, e.g., y = e+θ, then under the optimal contract, effort
may be shut down if target quality θ is sufficiently high.
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are both increasing functions in θ. The manager is only compensated for her cost of effort,

and the payoff to the investors is V FB
2 (θ) = θ2/2.

The search stage under the first-best scenario represents a standard bandit problem. Let

ΘFB denote the set of targets that will be invested in and V FB
1 denote the investors’ expected

value at the outset of the search stage.

Lemma 1 Under the first-best scenario, ΘFB = {θ : θ ≥ xFB}, where

xFB =

[
λθκmin

δ(κ− 2)

] 1
κ−2

. (4)

The investors’ first best expected payoff at the beginning of the search stage is

V FB
1 (xFB) =

κ
(
xFB

)2
2(κ− 2)

−
δ
(
xFB

)κ
λθκmin

. (5)

The optimal strategy of the investors under the first-best scenario is to finance the search

with a constant minimal (cutoff) quality xFB.4 The manager is required to always exert the

search effort and thus receives no private benefit from shirking. Because xFB also determines

the expected duration of the search, Lemma 1 suggests that investors on average wait longer

in the first-best scenario if there are many opportunities on the market (higher λ) or if the

search cost (δ) is low.

5 Optimal Contract Under Asymmetric Information

We now analyze the optimal contract when the efforts and target quality are manager’s

private information. We solve the model by backward induction.

5.1 Production Stage

The main friction faced by investors in the production stage is adverse selection. For ease

of exposition, imagine the following reduced problem without the search stage: the manager

is endowed with a target of quality θ that is unobservable by investors. The manager has

4Equations (4) and (5) illustrate the need to assume κ > 2. Otherwise, xFB and V FB1 are not well-defined.
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reservation utility Wτ− , which in this reduced problem is given (but in the full-fledged prob-

lem represents the utility carried over from the search stage). The investors must design a

screening contract that solicits truthful reporting of θ while maximizing their payoff, which

is the output net of the manager’s compensation.

Based on the revelation principle, we can without loss of generality consider the screening

contract as a direct mechanism: the manager reports her type θ̂ and receives an output target

y(θ̂) and associated compensation w(θ̂) if and only if the output is produced.5 Given the

contract, the manager’s objective is to maximize her compensation net of her (production)

effort cost:

R(θ) = max
θ̂

w(θ̂)− h(e) (6)

subject to the constraint

e = y(θ̂)/θ, (7)

because she needs to exert the necessary effort to produce the required level of output y(θ̂) in

order to receive compensation. This constraint illustrates that although effort is unobservable

in the production stage, the underlying agency friction is only adverse selection: effort merely

provides a cover for the manager’s report θ̂ so that her true type θ always remains hidden.

The contract is incentive compatible if and only if

θ = arg max
θ̂

w(θ̂)− h

(
y(θ̂)

θ

)
. (8)

When (8) is satisfied, R(θ) is known as the manager’s information rent : the amount of utility

(in excess of her reservation utility) that she must receive in order to truthfully reveal her

5Such contract is feasible because, given θ, there is no uncertainty or noise in the production technology.
Note that this contract can be alternatively written in a standard “pay-for-performance” form: a function
w(y), under which the manager is free to produce any level of output y and receive the corresponding wage
w(y), and no reporting is necessary. These two formulations are equivalent because in the equilibrium, both

the output target y(θ̂) and the wage w(θ̂) are strictly increasing in the manager’s reported type θ̂, thus
creating a one-to-one mapping between output and wage. Remark 1 below demonstrates such equivalence
in detail. Following the accepted standard in the literature, we consider the direct mechanism that involves
reporting because of its transparency in demonstrating the incentive power of the contract.
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private information.

Because the investors do not observe θ, their objective is to maximize the expected output

net of the manager’s compensation. The expectation is taken over the distribution of θ, which

in equilibrium is the result of the investment policy. Similar to the case of the first-best, we

can show that despite the asymmetric information, the optimal investment strategy is still

one characterized by a threshold, denoted by x:

Lemma 2 The optimal investment policy is a threshold one: Θ = {θ : θ ≥ x}, where x is

the investor’s choice.

Intuitively, if a target of quality θ̄ will trigger investment under some incentive-compatible

contract, the investors can always induce truthful reporting and thus invest in all targets

with better quality (i.e., θ > θ̄) by setting the output target to be y(θ̄) and the wage to be

w(θ̄) for those targets.6 Therefore, the investors’ expected net return must be at least weakly

increasing in target quality, and excluding high-quality targets is sub-optimal. As a result,

the investor’s maximal payoff from the screening contract can be written as V2(x) −Wτ− ,

where V2(x) solves

V2(x) = max
y(θ̂),w(θ̂)

∫ +∞

x

[y(θ)− w(θ)]

(
κxκ

θκ+1

)
dθ (9)

= max
y(θ̂),w(θ̂)

∫ +∞

x

[y(θ)− h(e(θ))−R(θ)]

(
κxκ

θκ+1

)
dθ (10)

subject to the IC condition (8).7 In other words, given the investment policy x, V2(x) captures

the investors’ expected payoff from production under the incentive-compatible screening

contract with optimally designed output-compensation combinations.

Deriving R(θ) and V2(x) represents a static mechanism design problem of which the

solution is as follows:

Proposition 1 Let γ ≡ κ
κ+2

< 1. Given any investment threshold x ≥ θmin set in the search

stage, the optimal contract in the production stage has the following properties:

6This is incentive compatible because it requires less effort from the manager to produce y(θ̄) when θ > θ̄.
7The term κxκ

θκ+1 represents the distribution of θ given the investment threshold x.
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– The manager’s information rent from a target of quality θ ≥ x is given by

R(θ) =
γ2

2
(θ2 − x2); (11)

– The investor’s expected payoff from production is given by

V2(x) =
γκ

2(κ− 2)
x2; (12)

– The optimal output is y∗ = γθ2 and the production effort is e∗ = γθ.

The manager’s information rent is a quadratic function of target quality θ and the investor’s

expected payoff is a quadratic function of the investment threshold x. Compared with the

first-best level of effort eFB in (2) and the first-best level of output yFB in (3), adverse

selection distorts both the optimal effort e∗ and output y∗ downward by a constant fraction:

1− γ = 2/(κ+ 2). Intuitively, a higher κ corresponds to a lower variance in θ and therefore,

less information asymmetry.

Given x, (11) implies that the conditional expectation of the information rent the manager

can receive is

U(x) ≡ E [R(θ)|θ ≥ x] =

∫ +∞

x

γ2

2

(
θ2 − x2

)( κxκ
θκ+1

)
dθ =

γ2x2

κ− 2
. (13)

The closed-form expression for U(x) and V2(x) greatly simplify the design of the optimal

contract in the search stage in the next section.

Remark 1 The optimal screening contract in Proposition 1 can be implemented via a simple

output sharing rule

w(y) = γ(y − γx2) +
γ2x2

2
(14)

Under this rule, if the manager produces a minimal amount of output γx2, she receives a

basic wage γ2x2

2
which exactly offsets her effort cost. Then, for every additional unit of output

the manager produces, she receives γ fraction of that as her compensation. This simple

14



output sharing rule represents an indirect mechanism, under which the manager does not

need to report her type and can freely produce any level of output she desires. In comparison,

Proposition 1 is derived based on a direct mechanism, under which the manager reports θ̂

and receives an output target y(θ̂) and the corresponding wage w(θ̂). However, these two

mechanism are equivalent (as an expected result of the revelation principle), because they

are both incentive compatible and deliver the exact same managerial rent R(θ) and the same

expected payoff to the investors. Thus, our choice of formulating the solution to the adverse

selection problem in the production stage as a direct mechanism is without loss of generality.

5.2 Search Stage

During this stage, the investors face a moral hazard and an adverse selection problems:

incentivize the search effort and procure truthful and timely report of the quality of the

arriving targets. While the interaction of the two problems can impose substantial analyti-

cal challenges in a general model, our setting allows us to tackle the problems sequentially.

In particular, Proposition 1 shows that the solution to adverse selection requires giving the

manager her information rent R(θ) for each target in which the company invests. Conse-

quently, the design of the optimal contract in the search stage can be simplified to focus only

on the incentives for the search effort.

Similar to standard agency models with a sole moral hazard problem (especially those

also set in continuous-time such as DeMarzo and Sannikov, 2006; Biais, Mariotti, Plantin,

and Rochet, 2007; and Sannikov, 2008), incentives for search effort are provided in the form

of promised future compensation to the manager. Specifically, let τ denote the stopping time

either because of transition to production stage or contract termination, {at}t∈[0,τ ] ∈ {0, 1}

denote the agent’s search effort, and {Ct}t∈[0,τ ] denote the compensation to the agent. The

contract can be characterized using the agent’s continuation utility Wt, defined as

Wt = E

[∫ τ

t

ρ(1− as)ds+

∫ τ

t

dCs +Wτ

]
. (15)

The first term inside the integral is the agent’s private benefit if she shirks (i.e., as = 0).

The last term represents her terminal compensation.
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Meanwhile, the contracting space can be simplified as follows:

Lemma 3 The optimal contract always implements no shirking (i.e., at = 1) during the

search stage. The manager is paid if and only if the contract moves to the production stage

and the manager produces the required output (i.e., dCt = 0 for all t < τ and Wτ = 0 if the

contract is terminated without production).

The first result holds because the search requires a cost δ but shirking generates a benefit

ρ < δ to the manager. Therefore, any contract that involves shirking can be strictly improved

by discouraging shirking through compensating the manager for her lost shirking benefit. The

second result arises because all players are equally patient, so any intermediate compensation

can always be delayed at no cost. Given that the production stage is static without noise or

risk, it is without loss of generality to accrue all payments until the output is produced.

With the contracting space simplified, the following proposition characterizes the dynam-

ics of the manager’s continuation utility and the IC condition in the search stage:

Proposition 2 At any time t, the investor’s optimal investment policy is a threshold one:

Θt = {θ : θt ≥ xt} where {xt}t>0 is the investor’s choice. Given xt, the manager’s continua-

tion utility Wt evolves according to

dWt = U(xt)

[
dNt − λ

(
θmin

xt

)κ
dt

]
. (16)

The manager exerts the search effort if and only if

[
λ

(
θmin

xt

)κ]
U(xt) ≥ ρ. (17)

The contract is terminated if Wt = 0.

Proposition 2 entails three results. First, similar to standard models with Poisson search,

Wt drifts down if no target arrives. If a target with sufficiently high quality arrives, there is

an upward jump in Wt, and the firm moves on to the production stage.

Second, and different from standard models in which the role of the manager ends with

the arrival of a search result, the existence of a production stage in our model implies that,
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given the investment policy xt, U(xt) is the manager’s expected utility reward (i.e., the

expected size of the upward jump in Wt) if a suitable investment target arrives. Here a

target is suitable if its quality clears the threshold of investment, i.e., θt > xt, which happens

at the rate of λ
(
θmin

xt

)κ
. Consequently, the manager faces a tradeoff between working and

shirking: shirking yields flow benefits ρdt. However, because no target arrives while she

shirks, her continuation utility drifts down at the rate of U(xt)
[
λ
(
θmin

xt

)κ]
dt. The manager

prefers not to shirk if the above-mentioned cost exceeds the benefit, which is captured by

the IC condition (17).

Third, given that Wt drifts downward in the absence of a suitable target, the contract

terminates and the manager receives no payment if she does not find a target after a suffi-

ciently long time has passed. This is because, given the production technology, the manager

can only produce something out of an actual target. If not, the manager with a very low

Wt may find it optimal to falsely announce the arrival of a suitable target and produce the

required output using only her effort. The optimal contract in that case generally involves

random termination (as in Green and Taylor, 2016 and Varas, 2018).

Investors have two controls when designing the optimal contract: the investment thresh-

old xt, and the terminal compensation Wτ . Lemma 3 implies that their expected payoff at

any time t ∈ [0, τ ] under the optimal contract, denoted as V1,t, solves

V1,t = E

[∫ τ

t

−δds+ yτ −Wτ

]
, (18)

subject to the IC constraints (8) and (17). It holds that yτ = y if production takes place, and

yτ = 0 if the contract is terminated without production. In other words, the investors pay

for the search cost δ. They retain the production output y if investment is ever made, but

have to make terminal compensation Wτ to the manager. The analysis so far have pinned

down the optimal, incentive compatible terminal compensation: if a suitable target can be

found, the manager receives an extra reward, which is U(x) in expectation. Otherwise,

she receives no payment if the contract terminates without production. Thus, the ensuing

analysis focuses on characterizing the optimal investment policy xt. Proposition 2 implies

that the investor’s payoff under the optimal contract can be summarized as a function of
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the manager’s continuation utility, or V1(W ), which solves the following Hamilton-Jacobi-

Bellman (HJB) equation with x being the only control variable:

0 = max
x

−δ − λ
(
θmin

x

)κ
U(x)V ′1(W ) + λ

(
θmin

x

)κ
[V2(x)−W − V1(W )] (19)

subject to the IC constraint (17). The first term represents the search cost. The second

term stems from the drift of dWt, and the third term represents the change in the investor’s

payoff if a suitable target is found and the contract moves into production.8

Rearranging terms, the HJB equation can be conveniently written as

V1(W ) = max
x

V2(x)−W − U(x)V ′1(W )− δ

λ

(
x

θmin

)κ
. (20)

The tradeoff faced by investors when setting the optimal investment threshold is as follows:

A higher x yields a higher expected payoff once a suitable target arrives: V ′2(x) > 0, as seen

in (12). The cost, however, is two-fold. First, targets with high quality arrive at a lower

rate which leads to higher search cost in expectation (the last term in 20). Second, once a

target arrives, the manager is given a higher reward to truthfully reveal the target quality:

U ′(x) > 0, as seen in (13). This higher reward must be accompanied by a faster decline of W

to maintain W as a martingale (16), which increases the likelihood of contract termination.

If the IC constraint (17) is slack, the optimal choice of x can be obtained by the first-order

condition:

V ′2(x)− U ′(x)V ′1(W )−
(
d

dx

)[
δ

λ

(
x

θmin

)κ]
= 0 (21)

The first term is positive (higher expected payoff from production) and the third term is

negative (higher search cost). The middle term captures the marginal continuation utility

and its sign depends on W . When W is large, V ′1(W ) < 0, because the promised com-

pensation to the manager lowers the investors’ payoff if a suitable target arrives and the

8Conditional on moving into production, the investors’ final payoff is the output y net of the wage w(θ)
paid for production and the manager’s residual utility W carried over from the search stage. The former can
be further divided into the compensation for the manager’s production effort h(e) and her information rent
R(θ), all embedded in the definition of V2(x) in equation (10). Put differently, the investors’ final payoff can
be written as y −R− h(e)−W , where the first three terms are captured (in expectation) by V2.
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search ends. When W is small, V ′1(W ) > 0, because the primary concern for the investors

is the likelihood of contract termination, which increases as W declines. Substituting V2(x)

from (12) and U(x) from (13) into (21) yields the optimal investment policy when the IC

constraint is slack:

x(W ) =

[(
1−

(
2γ

κ

)
V ′1(W )

)(
λγθκmin

δ(κ− 2)

)] 1
κ−2

(22)

The optimal investment threshold is increasing in the manager’s continuation utility, x′(W ) >

0.9 Because Wt drifts down over time, the optimal investment strategy is to adopt a pro-

gressively lower threshold for the quality of the arriving targets worth investing in.

The left-hand-side of the IC condition (17) is decreasing in x, because the arrival rate of

high-quality targets decreases faster than the manager’s expected rent from those targets.

Therefore, there may exist W such that the IC condition is binding when W ≥ W . In that

region, x(W ) is given by the IC condition, or

x(W ) = x̄ ≡
[
λγ2θκmin

ρ(κ− 2)

] 1
κ−2

, if W ≥ W (23)

In other words, the optimal investment threshold x is constant for sufficiently high level of

W . Setting x = x̄ in (22) implies that W solves

V ′1(W ) =
κ

2

(
1

γ
− δ

ρ

)
(24)

Meanwhile, θmin represents the lowest investment threshold that the investors can set. Sub-

stituting x = θmin into (22) implies that x(W ) = θmin for all W ≤ W , where W solves

V ′1(W ) =

(
1− δ(κ− 2)

γλθ2min

)
κ

2γ
(25)

That is, when W is sufficiently low, the optimal policy is to invest in the next target that

arrives, regardless of its quality. This maximizes the probability that the contract moves to

9Technically speaking, this is because V1(W ) is a concave function, i.e., V ′′1 (W ) < 0, which is a standard
feature of dynamic contracting models and can be visualized in Figure 1.

19



the production stage before it is terminated.10

Finally, we impose the following parameter assumption to maximize the economic values

of the W and W derived above:

Assumption 1 The parameters λ, θmin, κ, δ, ρ satisfy the following conditions:

λθ2min >
ρ(κ− 2)

γ2
; (26)

ρ > γδ. (27)

The first condition ensures that W < W , so they both exist under the optimal contract.

Intuitively, this condition implies that the search is valuable to investors in terms of arrival

rate and target quality. Therefore, the investors find it worthwhile to wait for a target with

sufficient quality as long as W is not too low and termination is not imminent. If this

condition is not satisfied, investors may find it optimal to minimize the waiting time by

investing in the first target regardless of its quality.

The second condition ensures that V ′1(W ) > 0. Intuitively, V ′1(W ) < 0 if W is sufficiently

high, because a larger promised utility to the manager diminishes the investors’ payoff when

a target is found. However, because W drifts downward in the absence of a suitable target,

investors can set the manager’s initial continuation utility at the outset of the search stage

to be W ∗ = arg maxW V1(W ), or V ′1(W ∗) = 0. Once the search begins, W drifts down into

the region in which V ′1(W ) > 0 until either a suitable target is found or the contract is

terminated. Condition (27) therefore ensures that W is on the equilibrium path. Note that

since γ = κ/(κ + 2) < 1, condition (27) can be jointly satisfied with ρ < δ, which ensures

that providing incentives for search is better than letting the manager shirk.

10The result that all targets trigger production whenW is sufficiently low relies partially on the assumptions
that all targets, regardless of their quality, generate positive return to the investors and require effort and
time to be discovered. The former can be justified if the investors have a common sense of the basic properties
of investment opportunities worth taken (e.g., firms with strong growth history and healthy balance sheet),
and the latter can be interpreted as “no free lunch” in the financial market. If, instead, the θmin target
represents a “default” option that is always immediately available, then when W is sufficiently low, investor
will intuitively abandon the search by resorting to the default option in lieu of contract termination. If
θmin < 0, or if there is a substantial fixed cost for production, then the optimal investment policy may
exclude some low-quality targets even when W is low and termination is imminent. If θmin is both always
available and low-value, the optimal contract may involve random termination in order to peg W at a
sufficiently high level to prevent the manager from exploiting this low-value default option, such as the case
studied in Varas (2018).
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Altogether, the optimal contract during the search stage can be summarized in the fol-

lowing proposition:

Proposition 3 Under the optimal contract, the investors’ value function V1(W ) solves the

HJB equation (19) subject to the IC condition (17) and the boundary condition V1(0) = 0.

Under Assumption 1, there exist {W,W} that solve (24) and (25), respectively, such that

the optimal investment policy x(W ) is given by

x(W ) =


θmin, if W < W[(

1−
(
2γ
κ

)
V ′1(W )

) (λγθκmin

δ(κ−2)

)] 1
κ−2

, if W ≤ W < W[
λγ2θκmin

ρ(κ−2)

] 1
κ−2

, if W ≥ W

(28)

where x′(W ) > 0 for all W ∈ (W,W ).

Figure 1 illustrates the value function V1(W ) and the three regions of the optimal in-

vestment policy x(W ). It also plots the first-best investment policy xFB and illustrates the

following result:

Corollary 3 x(W ) < xFB for all W .

To reduce the likelihood of contract termination the investors reduce the investment

threshold. When W is sufficiently low, all targets trigger production regardless of their

quality. When W is larger, the concern for termination is somewhat eased but is never

eliminated. Hence, the optimal investment threshold in the presence of agency frictions is

always below the first best, i.e., firms overinvest.

5.3 Robustness With Dynamic Adverse Selection

Our model assumes that production is a one-time decision. Once the investment is made and

the manager exerts the production effort e, a single output y is realized, and the contracting

relationship ends. This implies a static adverse selection problem and simplifies the deriva-

tion of the optimal screening contract. This subsection demonstrates the robustness of our

results when the production stage is also dynamic and the manager’s private information

evolves stochastically.
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Figure 1: Investors’ Value Function and The Optimal Investment Policy
The left panel of this figure plots the investors’ value function V1(W ) under the optimal contract. The right

panel plots the optimal investment threshold x(W ) according to Proposition 3 and the first-best investment

threshold xFB . W and W are defined according to (25) and (24), respectively, and W ∗ ≡ arg maxW V1(W )

represents the point at which V1(W ) is maximized. Parameter values are λ = 2.5, κ = 4.25, δ = 1.1, ρ = 0.8.

Let τ represent the end of the search stage. Consider the following extension: The

production stage lasts an exogenous period of T > 0 (i.e., from τ to τ +T ), during which the

manager continuously produces outputs from the target chosen in the previous stage. The

production technology is given by

yt = etξt (29)

where yt is the output, et is the manager’s (production) effort exerted at a quadratic personal

cost h(et) = e2t/2, and ξt is the productivity of the target, which now evolves over time. For

tractability, we assume the following law of motion for ξt:

Assumption 2 ξt follows a geometric Brownian motion (GBM) dξt = ξt (µdt+ σdZt) with

publicly-known parameters µ and σ. θ determines the initial value of ξt, i.e., θ = ξτ .

The main advantage of this assumption is that, when ξt follows a GBM, ξt = ξτνt, where

νt = exp

[(
µ− 1

2
σ2

)
t+ σZt

]
, (ντ = 1) (30)

is an exogenous stochastic process with known distribution for any given t. Therefore,
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dξt/dθ = ξt/ξτ = νt. In other words, the marginal value of target quality θ on its subsequent

productivity at any time during the production stage depends on the path of exogenous

shocks only, a property that greatly simplifies the analysis below.

If all information is public, the first-best effort and output in the production stage solve

max
et

yt − h(et) = etξt − h(et) (31)

The solution is

eFBt = ξt; (32)

yFBt = ξ2t . (33)

The investors’ expected payoff given the quality of the target, denoted by V FB
2 (θ), is given

by

V FB
2 (θ) = E

∫ τ+T

τ

(
yFBt − 1

2

(
eFBt

)2)
dt =

φ

2
θ2, (34)

where

φ = E

∫ τ+T

τ

ν2t dt =
e(2µ+σ

2)T − 1

2µ+ σ2
(35)

is a constant. Here, φ thus measures the marginal value of target quality summarizing the

joint effect of µ, σ, and T , and will be treated as a known parameter in the subsequent

analysis. The first-best investment policy is still a cutoff quality

xFB =

[
λφθκmin

δ(κ− 2)

] 1
κ−2

. (36)

Investors never abandon the search, and production begins only when a target that clears

xFB arrives. Their maximal expect payoff at the beginning of the search stage is

V FB
1 (xFB) =

κ
(
xFB

)2
2(κ− 2)

−
δ
(
xFB

)κ
λθκmin

. (37)

23



Similar to the main model, an adverse selection problem arises if effort and productivity

are both the manager’s private information (while the output yt is still observable to the

investors). However, this adverse selection is now dynamic in nature, because the investors

must solicit the truthful reporting of ξt for the entire duration of the production stage. Let

θ̂ and {ξ̂t}t∈(τ,τ+T ] represent the manager’s reported target quality and time-t productivity,

respectively. The resulting screening contract now involves a series of the output target

{yθ̂t (ξ̂t)}t∈(τ,τ+T ] and the corresponding wage {wθ̂t (ξ̂t)}t∈(τ,τ+T ] if the required output is pro-

duced. Conditional on any utility Wτ− carried over from the search stage, the manager’s

objective is to maximize her expected wage minus her (production) effort cost from the

contract – her information rent – which is given by

R(θ) = max
θ̂,ξ̂t,et

E

[∫ τ+T

τ

(wθ̂t (ξ̂t)− h(et))dt

]
(38)

subject to the constraint that etξt = yθ̂t (ξ̂t). That is, similar to that in the baseline model, if

the manager reports ξ̂t, she must produce the required output by exerting a certain degree

of effort. The investors’ objective is to maximize the expected output net of the manager’s

wage from the contract. Following a similar argument as that used in the main model, Θ,

the set of targets that trigger the investment, is again an open set bounded from below, i.e.,

Θ = {θ : θ ≥ x} (39)

for some cutoff threshold x. Then, the investors’ objective is to maximize their payoff at the

outset of the production stage, which is V2(x)−Wτ− , where

V2(x) = max
yt,wt

∫ +∞

x

E

[∫ τ+T

τ

(yt − wt)dt
]
dF (θ) (40)

subject to the IC constraint θ̂ = θ and ξ̂t = ξt for all t ∈ (τ, τ + T ].

Comparing to the existing literature, a theoretical innovation (and challenge) of this

setting is that the manager’s private information ξt is persistent, which implies the adverse

selection problem the investors face is dynamic. While there are studies exploring persistent

private information in the context of dynamic moral hazard (Williams, 2011, 2015, He et al.,

24



2017, Marinovic and Varas, 2019, and Feng, 2022), studies of persistent private information

in the context of adverse selection are rare, as it is known to be a challenging problem.

Fortunately, the specific structures of our model implies that the screening problem during

the production stage is also time-separable. That is, the set of feasible contract terms (i.e.,

{yt, wt}) at time t ∈ [τ, τ + T ] is independent of the history of the contract, and the flow

utility of the manager and the investors at time t depends only on the initial and the

current private information of the manager. Under time-separability, the dynamic adverse

selection problem can be converted into a static mechanism design problem similar to that

analyzed in Section 5.1, allowing us to uniquely pin down R(θ) and V2(x) under any incentive

compatible contract which is all we need to feed back into the search stage. The resulting

optimal contract under this extension is summarized as follows:

Proposition 4 Under Assumption 2, for any given investment policy x, the optimal contract

in the production stage has the following properties:

– The manager’s information rent from a target of quality θ > x at the beginning of the

production stage is given by

R(θ) =
φγ2

2
(θ2 − x2). (41)

– The investor’s expected payoff at the beginning of the production stage is

V2(x) =
φγκ

2(κ− 2)
x2. (42)

– During the production stage, the investors’ optimal output target {y∗t }t∈[0,T ] is given by

y∗t = γξ2t and the implied equilibrium production effort is e∗t = γξt.

The optimal contract during the search stage can be summarized by the investors’ value

function V1(W ), which solves an HJB equation analogous to (19) subject to the boundary

condition V2(0) = 0. In particular, if Assumption 1 holds, and φ ≥ 1, then there exist
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{W,W} such that the optimal investment policy x(W ) is given by

x(W ) =


θmin, if W < W[(

1−
(
2γ
κ

)
V ′1(W )

) (φλγθκmin

δ(κ−2)

)] 1
κ−2

, if W ≤ W < W[
φλγ2θκmin

ρ(κ−2)

] 1
κ−2

, if W ≥ W

(43)

x(W ) < xFB, and x′(W ) > 0 for all W ∈ (W,W ).

Despite the dynamic nature of the adverse selection problem, our main results remain

qualitatively intact. In particular, the manager’s information rent in the production stage

is still a quadratic function of the target quality θ and the investor’s expected payoff is still

a quadratic function of the investment threshold x. In the search stage, W drifts downward

in the absence of a suitable target, and the optimal investment threshold x is progressively

lower, which leads to overinvestment.

The results in this subsection demonstrate the robustness of the main model and its

practical implications. Nevertheless, the solution technique of this dynamic version of the

adverse selection problem is far more involved than the one used in the static version and

is potentially applicable to a broad class of questions involving persistent and time-varying

private information. Our solution method utilizes the Myersonian approach developed in

Eső and Szentes (2007) and Pavan, Segal, and Toikka (2014) but extended to continuous

time. The details are provided in the proof of Proposition 4 in the appendix for the inter-

ested readers. We hope that the solution to this extension provides a unified framework for

researchers interested in jointly studying these two important agency frictions.

6 The Effect of Interaction Between Agency Frictions

The core problem analyzed in this paper is the interaction of two agency frictions: moral

hazard and adverse selection. To further illustrate the effect of such interaction, it is useful

to compare the results of this model with those in models with only one of the frictions.

Consider a benchmark setting with a single type of target available for investment. The

gross return of the target to the investors is K (a constant), which is realized immediately
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when the target is found and revealed to the investors. The search cost (δ) and the arrival

intensity of the target if the manager works (λ) are the same as before. This represents

only a problem of moral hazard (regarding the unobservable search effort) and the following

proposition summarizes the optimal contract under this benchmark setting:

Proposition 5 Suppose there is a single target worth K arriving via a Poisson process with

intensity λ when the manager exerts search effort. Then, under the optimal contract,

dWt =
ρ

λ
(dNt − λdt) (44)

Define V2 = K − ρ/λ. The investors’ value function V1(W ) solves the HJB equation

0 = −δ − ρV ′1(W ) + λ [V2 −W − V1(W )] (45)

plus the boundary conditions V1(0) = 0.

The optimal contract described in Proposition 5 has different properties than those described

in Proposition 3. Most crucially, without the distribution of target quality, investors do not

have the choice of investment policy, and the search ends as soon as the target arrives. The

resulting IC constraint for search effort is always binding along the equilibrium path. This

is because the rate at which W drifts down is only subject to the IC constraint and a higher

rate of the drift carries two costs. First, it expedites termination in the absence of the target.

Second, it must be compensated with a larger upward jump in W when the target arrives,

which lowers the investors’ payoff.

A benchmark setting only with adverse selection can be found in Malenko (2019). This

paper studies the optimal design of a dynamic capital allocation process in which a division

manager privately observes the arrival and quality of investment projects. There is no moral

hazard because project arrivals are stochastic and do not depend on the manager’s effort. The

optimal contract focuses on soliciting truthful report of the manager’s private information,

which is transient. Each project is a take-it-or-leave-it opportunity with instant return if

the headquarters undertake it, and there is an auditing technology that (for the most part)

perfectly reveals the quality of the project at a cost. The agency friction arises from the
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manager’s empire-building preference: she is inclined to exaggerate the quality of the project

in order to induce a larger investment. As a result, her continuation utility drifts upward

in the absence of any reported project and jumps downward when an investment project is

taken without auditing to cancel out her private benefit from the investment. There is no

termination under the optimal contract, because the headquarters can always prevent W

from dropping too low by shrinking the size of the investment. Finally, the optimal contract

always induces underinvestment.

In contrast, investors in our model face a moral hazard problem of unobservable search

effort in addition to unobservable target arrival and quality. As a result, the manager’s con-

tinuation utility drifts downward in the absence of a suitable target and jumps upward when

investment is made.11 In particular, because the manager can divert the search resources to

generate private benefits, the search stage must end at some point, otherwise the manager

will never report the arrival of any target and enjoy unlimited utility. Moreover, with her

private information regarding the target quality, the manager can continue to extract rents

from the investors during the production stage. Finally, the optimal contract always induces

overinvestment and yields different empirical implications than Malenko (2019).

7 Comparative Statics and Empirical Predictions

The simple form of the optimal investment policies xFB and x(W ) summarized in Lemma 1

and Proposition 3 allows the derivation of useful comparative statics. According to Corol-

lary 3, agency frictions in the model lead to overinvestment, the degree of which can be

measured in at least two ways: (i) the ratio between x(W ) and xFB (i.e., θmin/x
FB) which

represents the maximal degree of overinvestment; and (ii) the ratio between x(W ) and xFB

(i.e., x̄/xFB) which represents the minimal degree of overinvestment.12 A parameter change

is said to exacerbate overinvestment if it lowers at least one of the two ratios. Based on these

11In that regard this result resembles Che, Iossa, and Rey (2021) where an uninformed principal uses an-
other follow-on contract to induce the truthful report from an informed agent about the cost of implementing
an innovation idea. However, both the generation and the implementation of the idea in Che, Iossa, and
Rey (2021) are static problems. In contrast, the search stage in this paper involves a dynamic problem with
endogenous termination.

12Note that condition (27) ensures x(W ∗) = x̄. Thus, the minimal degree of overinvestment is also
equivalent to the initial level of overinvestment at the outset of the search stage.
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definitions, Lemma 1 and Proposition 3 imply the following:

Proposition 6 A higher λ or ρ and a lower δ exacerbate overinvestment.

Intuitively, as discussed in Section 4, a higher target arrival rate λ and a lower search cost δ

increases xFB and reduces the ratio θmin/x
FB, thereby exacerbating the maximal degree of

overinvestment. The search cost δ does not affect x̄ and thus a lower δ also decreases x̄/xFB

and exacerbates the minimal degree of overinvestment. Meanwhile, the tightness of the IC

condition depends on the manager’s private benefit from shirking ρ. A higher ρ tightens the

IC condition and lower x̄ but does not affect xFB, thus exacerbating the minimal degree of

overinvestment.

These comparative statics generate empirically relevant predictions that are testable in

the markets of M&A, HFA, VC or SPAC, in which there is extensive empirical evidence

for overinvestment. Prior studies (e.g., Shleifer and Vishny, 1997; Franzoni, 2009; Malenko,

2019; Gregor and Michaeli, 2020, 2022) often attribute overinvestment to the manager’s

empire-building preferences. Our model offers an alternative explanation based on optimal

contracting under agency frictions. In particular, Proposition 6 implies that overinvestment

is positively correlated with λ and ρ and negatively correlated with δ. Empirically, the in-

tensity λ of target arrival, can be proxied by the number of firms in the industry and/or

the frequency of M&A, HFA, VC, or SPAC activities. The manager’s private benefit/perk ρ

is harder to measure directly. However, in our model it equals the minimal speed at which

the manager’s continuation utility has to drift down without the target. Therefore, ρ can be

indirectly measured by the incentive power of the managerial contract such as the fraction

of inside equity. This is also the standard interpretation in the optimal contracting litera-

ture (e.g., DeMarzo and Sannikov, 2006). The search cost δ can be proxied by geographical

proximity/location (of the bidder, activist hedge fund, VC fund, or SPAC), executive con-

nections, as well as by standard measures for availability of information about investment

targets (e.g., percentage of public firms in the industry, stock liquidity, analyst coverage,

and institutional holdings) given that more information facilitates searching. Together, the

results in Proposition 6 can be translated into the following testable empirical prediction:

Prediction 1 Overinvestment in M&A, HFA, VC or SPAC is positively associated with the
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number of firms and frequency of deals in these markets, the geographical proximity and the

average incentive power (of the bidder, managers of activist hedge fund, VC fund, or SPAC),

as well as with the executive connections, stock liquidity, analyst coverage, and institutional

holdings of the targets.

Our model also predicts that along the equilibrium path, investors optimally adopt a

progressively lower investment threshold with value between x(W ) and x(W ). Because

a higher investment threshold is associated with higher expected payoff (V ′2(x) > 0), the

dynamics of x can be potentially proxied by the variations in the returns to M&A deals, VC

investments, HFA targets, or SPAC business combinations. In particular, the gap between

x(W ) and x(W ) can be interpreted as the return dispersion in those markets, which is

arguably straightforward to measure. Thus, Propositions 3 and 6 suggest that such dispersion

is wider if λ is higher or if ρ is lower. Therefore, Proposition 6 implies the following testable

empirical prediction:

Prediction 2 The return dispersion of M&A deals, VC investments, HFA targets, or SPAC

business combinations is positively associated with the frequency of those activities and the

number of firms in the market. The return dispersion is negatively associated with the average

incentive power of the managerial contract of the bidder, activist hedge fund, VC fund, or

SPAC.

We further complement the analytical comparative statics with numerical simulations,

which yield practical predictions regarding the distribution of the variables of interest. Specif-

ically, for each set of parameters, we simulate 1,000 paths of evolutions of the contract and

calculate the success rate (i.e., the fraction of paths in which a suitable target arrives and

triggers the investment) and the manager’s initial time budget (i.e., the maximum search

time allowed before termination). We also calculate the average and standard deviations of

the search time, target value, and managerial compensation conditional on the investment

being triggered.

Table 1 presents the results for a benchmark case and several comparative statics in

which we maintain the value for all but one parameter of the benchmark. A higher λ (target

arrival rate) increases both the frequency of deal completion and the maximal search time
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allowed before termination. In contrast, a higher δ (search cost) or ρ (agency cost) both

lower the completion rate and the maximal time allowed. A higher κ, which means a thinner

tail for the underlying distribution of target quality (i.e., fewer high-quality targets), imply

the same results.

Table 1: Simulation

(1) (2) (3) (4) (5)
Benchmark Higher λ Higher ρ Higher δ Higher κ

Success rate 0.33 0.44 0.28 0.29 0.26
Initial time budget 143 446 60 105 61

Conditional on search being successful
Average search time 78.04 255.97 30.81 62.42 33.40

Std. Dev. 43.65 144.23 17.97 30.96 18.53
Average target value 5.47 11.02 4.60 5.41 3.94

Std. Dev. 38.82 44.43 41.84 41.11 31.54
Average managerial compensation 3.33 6.63 2.88 3.21 2.47

Std. Dev. 24.28 27.87 26.14 25.69 20.50

The parameters for the benchmark are λ = 3, ρ = 0.8, δ = 1.1, κ = 2.5. In columns (2) to (5), all parameters

are the same as those in the benchmark except for: λ = 4 in column (2); ρ = 1 column (3); δ = 1.3 in the

column (4); and κ = 2.6 in column (5). Each column corresponds to 1,000 paths of simulations. Success

rate is the fraction of the paths in which a suitable target according to the optimal investment policy arrives

and investment is triggered. The initial time budget is the maximal search time allowed before contract

termination. Managerial compensation of each deal refers to Wτ− + R(θ), i.e., the residual utility carried

over from the search stage plus the managerial rent in the production stage based on the quality of the

target. The average and standard deviations of the search time, target value, and managerial compensation

are conditional moments of all paths that do not end with termination.

Interestingly, higher λ implies an average longer search time conditional on the search

being successful. There are two reasons for this outcome. First, higher λ increases the

maximal allowed search time. Second, with more abundant potential targets, the optimal

contract imposes a higher initial hurdle for investment that also declines slowly over time.

This can be seen in the higher average target value and managerial compensation, which are

determined by the investment hurdle x. In comparison, the manager is given a shorter time

budget as well as a more rapidly declining investment hurdle when δ, ρ, or κ are higher,

resulting in a lower average target value and managerial compensation but also a faster

search time. These results can be summarized in the following testable prediction, which may

help reconcile the observed correlation between the success rate and performance of various
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search processes, such as the large numbers of SPAC business combinations completed in

recent years and their poor subsequent returns.13

Prediction 3 The average and the variance of the returns to M&A deals, HFA targets,

VC investments and SPAC business combinations are positively correlated with geographical

proximity, frequency of deal completion, number of firms and relative frequency of public

firms, executive connections, stock liquidity, analyst coverage, and institutional holdings of

the targets, and negatively correlated with the average incentive power of the managerial

contract of the bidder, activist hedge fund, VC fund, or SPAC.

The empirical implications of our extension with dynamic adverse selection are similar

to those in the baseline model with the addition of a new one pertaining to the parameter φ,

which can be interpreted as the industry or regional average return of M&A, HFA, VC, or

SPAC activities. It is straightforward to see that a higher φ increases both xFB and x(W )

while x(W ) = θmin is unchanged, leading to the following testable prediction:

Prediction 4 The overinvestment and return dispersion in M&A, HFA, VC, or SPAC are

positively associated with the average returns in those markets.

It is worth emphasizing that the above-described hypotheses are formulated ceteris

paribus. Empirical testing of these hypotheses thus requires identification to control for

confounding factors. Although rigorous empirical analysis is outside the scope of this paper,

several identification strategies, such as using the decimalization on major stock exchanges

as an exogenous shock to stock liquidity (e.g., Edmans, Fang, and Zur, 2013), or the addition

of non-stop flights between the locations of a firm and its potential investment targets as

an exogenous shock to search cost (e.g., Bernstein, Giroud, and Townsend, 2016), already

exist in the literature and may provide useful settings to explore the predictive power of the

model in this paper.

13See, e.g., Gahng et al. (2022) and Klausner, Ohlrogge, and Ruan (2022) for relevant statistics.
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8 Concluding Remarks

We consider a setting where investors delegate the search for investment targets and their

operation to a manager. Our model highlights two novel yet realistic features of the search

process. First, the manager is privy to information about target arrival and quality and needs

to receive proper incentives to maximize the likelihood of discovering investment targets and

truthfully disclose their value to investors. Second, the relationship between the investors

and the manager does not end when the relevant information is disclosed. The manager

is also tasked with generating output from the investment target—a process in which the

manager’s information advantage pertains. These features lead to simultaneous presence of

an adverse selection and a moral hazard problem. The resulting optimal investment policies

exhibit overinvestment relative to the first-best, which sheds light on understanding and

predicting the returns from M&A deals, VC investments, HFA interventions, and/or SPAC

business combinations.

Our work can be extended in several directions. For simplicity, the model does not allow

the manager to revert to the search stage once production begins. In practice, the search

and production processes do not always move forward linearly. Letting the manager conduct

both search and production repeatedly or simultaneously may yield interesting insights about

firms’ optimal internal organization and/or resource allocation. The manager may be allowed

to exert variable levels of effort in order to expedite the search process. Finally, the investors

may also have access to an auditing technology which can reveal the quality of the announced

target at a cost. We leave these topics for future work.
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Appendix

Proof of Lemma 1: First, V FB′
2 (θ) = θ > 0. Therefore, if x ∈ ΘFB for some x, then

θ ∈ ΘFB for all θ > x. i.e., ΘFB = {θ : θ ≥ xFB}. Thus, the conditional expectation of the
investors’ payoff from setting an arbitrary cutoff investment quality x is

VFB2 (x) ≡ E
[
V FB
2 (θ)|θ ≥ x

]
=

∫ +∞

x

θ2

2

(
κxκ

θκ+1

)
dθ =

κx2

2(κ− 2)
. (46)

Equation (46) utilizes the fact that a Pareto distribution truncated from below at some
x > θmin is a Pareto distribution with the same shape parameter κ and scale parameter x.
Equation (46) also reveals why κ > 2 is needed for the first-best to exist. Let V FB

1 (x) be
the investors’ value function at the outset of the search stage associated with cutoff policy
x, then

V FB
1 (x) = max

x

∫ +∞

0

[
−δt+ F (x)V FB

1 (x) + (1− F (x))VFB2 (x)
]
λe−λtdt. (47)

The three terms inside the square brackets represent the cost of search, the payoff from
a target with quality lower than x, and the expected payoff from the arrival of a target
with quality x or above, respectively. Using the fact that F (x) = 1 − (θmin/x)κ for Pareto
distribution, V FB

1 (x) satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:

0 = max
x
−δ + λ

(
θmin

x

)κ [
VFB2 (x)− V FB

1 (x)
]
. (48)

Substituting (46) into the HJB equation and re-arranging the terms yields

V FB
1 (x) = max

x

κx2

2(κ− 2)
− δxκ

λθkmin

. (49)

The first order condition with respect to x yields xFB as in (4). Substituting xFB into (49)
yields V FB

1 (xFB) as in (5).

Proof of Lemma 2: Suppose there is an incentive-compatible optimal contract C under
which an open set H exists with the following properties: for all θ ∈ H, θ /∈ Θ, and there
exists θ′ such that θ′ ∈ Θ but θ′ < θ̃ ≡ inf H. Let θ̄ ≡ max{θ : θ ∈ Θ, θ < θ̃}. Clearly,
y(θ̄) − w(θ̄) > 0 and w(θ̄) ≥ h(e(θ̄)) if C is optimal. Now consider a contract C ′ that is

otherwise identical to C except for the following: for any report θ̂ ∈ H, the required output
y(θ̂) = y(θ̄) and the associated compensation is w(θ̂) = w(θ̄). This contract is incentive-

compatible because for all θ̃ ∈ H, e(θ̃) = y(θ̄)/θ̃ < e(θ̄) and is independent of the report θ̂.
Thus, w(θ̃) = w(θ̄) > h(e(θ̃)) for all θ̃. However, y(θ̄) − w(θ̄) > 0 implies that C ′ generates
the same payoff as C for all θ /∈ H but positive (higher) payoff for all θ̃ ∈ H, contradicting
the assumption that C is optimal. Therefore, it must be that such H does not exist under
the optimal contract.
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Proof of Proposition 1: The investors offer a screening contract {w(θ̂), y(θ̂)}. The man-

ager reports her type θ̂, produces the required level of output, and receives the associated
compensation. With a slight abuse of notation, define

R(θ, θ̂) = w(θ̂)− h(e) (50)

as the information rent of the manager with type-θ reporting θ̂, subject to the constraint
that y(θ, e) = y(θ̂). i.e., she must produce the level of output designed for the type-θ̂ agent.
Let e(y, θ) represent the necessary effort required by a type-θ manager to produce output y.
Then, one can define R(θ) = R(θ, θ) as the agent’s equilibrium rent under truthful reporting,
and

θ̂∗(θ) = arg max
θ̂

R(θ, θ̂) (51)

as the optimal reported type chosen by a type-θ agent. This optimality implies the following
envelope condition

Rθ̂(θ, θ̂
∗(θ)) = 0. (52)

Therefore, in the equilibrium

R′(θ) =
∂R(θ, θ̂∗(θ))

∂θ
= Rθ +Rθ̂(θ, θ̂

∗(θ))
dθ̂∗(θ)

dθ
= Rθ = −h′(e)eθ(y, θ) (53)

based on the envelope condition.
The investors’ payoff in the production stage is therefore V2(x)−Wt− , where

V2(x) = max
y,w

∫ ∞
x

[y(θ)− w(θ)]dF (θ) = max
y,w

∫ ∞
x

[y(θ)− h(e(θ, y))−R(θ)]dF (θ) (54)

where

F (θ) = 1−
(x
θ

)κ
(55)

f(θ) =
κxκ

θκ+1
. (56)

Applying integration by parts to the last term inside the integral of V2(x) in (54) yields∫ ∞
x

R(θ)dF (θ) =

∫ ∞
x

R′(θ)(1− F (θ))dθ +R(x). (57)

Substituting this into (54) above yields

V2(x) = max
y

∫ ∞
x

[y − h(e)−R′(θ)g(θ)]f(θ)dθ (58)
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where

g(θ) ≡ 1− F (θ)

f(θ)

represents the inverse hazard function of θ. Replacing R′(θ) with (53), point-wise maximiza-
tion with respect to y yields the following optimality condition:

1− h′(e)ey(e, θ) +
dh′(e)eθ(y, θ)

dy
g(θ) = 0 (59)

which yields the optimal target y for each type θ. Because y = θe and h(e) = e2/2,
e(y, θ) = y/θ, eθ = −y/θ2, and

dh′(e)eθ(y, θ)

dy
= −dy

2/θ3

dy
= −2y

θ3
.

The fact that θ follows a Pareto distribution implies that

g(θ) =
1− F (θ)

f(θ)
=
θ

κ
(60)

Substituting these results into (59) yields

1− y

θ2
− 2y

κθ2
= 0 (61)

which implies y = γθ2, where

γ =
κ

κ+ 2
. (62)

Substituting y = γθ2 into (50). The IC constraint θ̂ = θ and the fact that R(x) = 0 under
the optimal screening contract yields

R(θ) =
γ2

2
(θ2 − x2). (63)

Combine this with y = γθ2 implies that

V2(x) =
γκ

2(κ− 2)
x2. (64)

Proof of Proposition 2: Let Ft denote the filtration generated by the manager’s report
θt (where θt = 0 if no investment opportunity arrives). Wt is an Ft-martingale and thus,
by the martingale representation theorem for jump processes, there exists a Ft-predictable,
integrable process βt such that

dWt = atβt(dNt − λ(1− F (xt))dt). (65)
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Incentive compatibility of the search effort requires that λ(1 − F (xt))βt ≥ ρ. Incentive
compatibility of truthful reporting of θ requires that Wτ − Wτ− = R(θτ ) if the contract
moves to the next stage, which implies βt = E[R(θt)|θt ≥ xt] = U(xt) by the property of a
martingale.14 Thus, given the investment policy xt,

dWt = U(xt)(dNt − λ(1− F (xt))dt) (66)

where U(xt)λ(1−F (xt)) ≥ ρ. Substituting in 1−F (xt) =
(
θmin

xt

)κ
yields equations (16) and

(17).

Proof of Proposition 3: Applying Ito’s lemma to dWt implies the investors’ value function
in the search stage solves the following HJB equation:

0 = max
x

−δ − λ
(
θmin

x

)κ
U(x)V ′1(W ) + λ

(
θmin

x

)κ
[V2(x)−W − V1(W )] (67)

subject to the IC constraint (17). Substituting U(x) from (13) and V2(x) from (12) into the
HJB equation and rearranging terms yields:

V1(W ) = max
x

(
γκ

2(κ− 2)

)
x2 −

(
γ2x2

κ− 2

)
V ′1(W )−W − δ

λ
xκθ−κmin. (68)

Suppose the IC constraint is slack, then the first order condition implies

γ

κ− 2
[κ− 2γV ′1(W )]x =

δ

λ
κxκ−1θ−κmin. (69)

The solution is

x(W ) =

[(
1−

(
2γ

κ

)
V ′1(W )

)(
λγθκmin

δ(κ− 2)

)] 1
κ−2

. (70)

If (17) is binding, then

λ

(
θmin

x

)κ
U(x) =

λθκmin

xκ

(
γ2x2

κ− 2

)
= ρ (71)

yields the solution

x(W ) = x̄ ≡
[
λγ2θκmin

ρ(κ− 2)

] 1
κ−2

. (72)

14Note that this also follows the definition of R(θ) in Section 5.1 which is the information rent the manager
must be given to reveal θ truthfully in addition to any utility Wτ− carried over from the search stage.
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Substituting (72) into (70) implies that there exists W such that

x(W ) =

[(
1−

(
2γ

κ

)
V ′1(W )

)(
λγθκmin

δ(κ− 2)

)] 1
κ−2

= x̄. (73)

That is, W solves

V ′1(W ) =
κ

2

(
1

γ
− δ

ρ

)
. (74)

Meanwhile, substituting x = θmin into (70) implies that there exists W such that

θmin =

[(
1−

(
2γ

κ

)
V ′1(W )

)(
λγθκmin

δ(κ− 2)

)] 1
κ−2

. (75)

That is, W solves

V ′1(W ) =

(
1− δ(κ− 2)

γλθ2min

)
κ

2γ
. (76)

The existence of both {W,W} requires that W > W , which is equivalent to

κ

2

(
1

γ
− δ

ρ

)
<

(
1− δ(κ− 2)

γλθ2min

)
κ

2γ
(77)

which simplifies to (26). Finally, V ′1(W ) > 0 requires that

κ

2

(
1

γ
− δ

ρ

)
> 0 (78)

which implies (27).

Proof of Corollary 3: We can prove this result regardless of whether Assumption 1 holds,
i.e., whether the IC constraint is binding for some W . Note that under the optimal contract,
V ′(W ) > −1 for all W . This is because investors can always make a cash transfer to the
manager, which lowers W and V (W ) by the exact same amount. Therefore, the marginal
value of building W inside the firm can never be lower than the marginal value of cash
transfer, which is −1. Substituting V ′(W ) = −1 into the first-order condition (22) implies
that

lim
W→+∞

x(W ) =

[
γ

(
1 +

2γ

κ

)(
λθκmin

δ(κ− 2)

)] 1
κ−2

(79)
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if the IC constraint (17) is never binding. Because

2γ

κ
=

2κ

κ(κ+ 2)
< 1 (80)

when κ > 2, this limit is always smaller than xFB. Thus, x(W ) < xFB for all W .

Proof of Proposition 4:

A. The Production Stage
This section solves the optimal screening contract in the production stage. The proof

begins with deriving the manager’s information rent for any incentive compatible contract.
Consider any report θ̂ made by a manager possessing an arbitrary θ-quality target. Based on

this report, the manager is assigned the contract C(θ̂), which imposes output target yθ̂(ξ̂t)t
for any future report ξ̂t, the associated wage wθ̂(ξ̂t)t if the required output is produced. The

contract implies a recommended effort process êt ≡ yθ̂t /ξ̂t for all t. Therefore, given the true
productivity process ξt, the manager’s actual effort choice et must satisfy:

etξt = êtξ̂t. (81)

The payoff for the manager is

R(θ; θ̂) = E

[∫ τ+T

τ

(
wθ̂(ξ̂t)− h(et)

)
dt

]
. (82)

In principle, θ̂ represents a very large set of possible deviations of the manager. However,
Pavan et al. (2014) and the subsequent studies of dynamic adverse selection (e.g., Bergemann
and Strack, 2015, Gershkov, Moldovanu, and Strack, 2018, etc.) show that if the screening
problem is time-separable, it is without the loss of generality to establish the IC condition for
a particular type of deviation from the manager: if she misreports the target quality, θ̂ 6= θ,
her follow-up strategy is to continue misreporting as if the true quality was θ̂ and she had
reported that truthfully. More formally, at any time, the manager’s reported productivity
satisfies the following so-called consistent deviation:

ξ̂t = θ̂vt = θ̂ exp

[(
µ− 1

2
σ2

)
t+ σZt

]
(83)

where Zt represents the true productivity shocks the misreporting manager experiences.
This implies that although the manager’s private information regarding ξt is persistent, it is
without loss of generality to label each manager only by the quality of her target θ. Thus,
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we can differentiate (82) with respect to θ to obtain:

∂

∂θ
R(θ; θ̂) = E

[∫ τ+T

τ

(
− ∂

∂θ
h(et)

)
dt

]
(84)

= E

[∫ τ+T

τ

(
etêtξ̂t
θξt

)
dt

]
(85)

= E

[∫ τ+T

τ

(
etêtθ̂

θ2

)
dt

]
(86)

where the second line utilizes the constraint (81), and the third line utilizes the consistent

deviation (83). Evaluating (86) at the equilibrium (êt = et, ξ̂t = ξt) and substituting et with
yt/ξt implies

R′(θ) = E

[∫ τ+T

τ

(
e2t
θ

)
dt

]
= E

[∫ τ+T

τ

1

θ

(
yt
ξt

)2

dt

]
(87)

which is the dynamic envelop condition analogous to the envelop condition derived in the
proof of Proposition 1 above. Integrating (87) from x up yields the information rent for any
given θ-quality target:

R(θ) =

∫ θ

x

E

[∫ τ+T

τ

1

q

(
yt
ξt

)2

dt

]
dq +R(x). (88)

Next, we derive the investors’ expected payoff given the distribution of θ. With a slight
abuse of notation, let

∫∞
x

(·)dF (θ;x) denote the expectation of θ taken under the support Θ
taking into account how the distribution of F (θ) shifts with x. The investors’ maximal payoff
at the outset of the production stage under any incentive compatible contract is V2(x)−Wτ− ,
where

V2(x) = max
yt,wt

∫ ∞
x

E

[∫ τ+T

τ

(yt − wt)dt
]
dF (θ;x). (89)

The definition of information rent R (Eq. 38) implies that

E

[∫ τ+T

τ

wtdt

]
= R(θ) + E

[∫ τ+T

τ

h(et)dt

]
. (90)

Substituting this into the definition of V2(x) (Eq. 89) yields

V2(x) = max
yt

∫ ∞
x

E

[∫ τ+T

τ

(
yt −

1

2

(
yt
ξt

)2
)
dt

]
dF (θ;x)−

∫ ∞
x

R(θ)dF (θ;x). (91)

Applying integration by parts and the fundamental theorem of calculus to the last term
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yields ∫ ∞
x

R(θ)dF (θ;x) =

∫ ∞
x

R′(θ)

(
1− F (θ;x)

f(θ;x)

)
dF (θ;x) +R(x) (92)

=

∫ ∞
x

R′(θ)

(
θ

κ

)
dF (θ;x) +R(x) (93)

where the second line comes from the property of the Pareto distribution. Clearly, R(x) = 0
under the optimal contract. Replacing R′(θ) with (87) and substituting the above term back
to (91) yields

V2(x) = max
yt

∫ +∞

x

E

[∫ τ+T

τ

(
yt −

(
1

2
+

1

κ

)(
yt
ξt

)2
)
dt

]
dF (θ;x). (94)

Point-wise maximization of (94) with respect to yt yields the optimal output target y∗t and
effort e∗t :

y∗t = γξ2t (95)

e∗t = γξt (96)

where γ = κ/(κ + 2). Substituting (96) and (95) back into (88) yields the following infor-
mation rent under the optimal contract:

R(θ) =

∫ θ

x

E

[∫ τ+T

τ

1

q
(γξ)2 dt

]
dq (97)

R(θ) =

∫ θ

x

γ2qE

[∫ τ+T

τ

ν2t dt

]
dq (98)

=

∫ θ

x

φγ2qdq =
φγ2

2

(
θ2 − x2

)
(99)

Finally, substituting (95) back into (94) yields

V2(x) =

∫ +∞

x

E

[∫ τ+T

τ

γξ2t
2
dt

]
dF (θ;x) (100)

=

∫ +∞

x

φγκxκ

2
θ1−κdθ =

φγκ

2(κ− 2)
x2. (101)

Note that, similar to the baseline model, because the investors and the manager share
the same discount rate (both 0), and there is no endogenous turnover during the production
stage, all wage payments {wt} can be postponed until the end of the production period. Any
Wτ− carried over to the production stage can also be paid at the end of the production stage
together with all the accrued wage payments.

B. The Search Stage
Let as ∈ {0, 1} denote the manager’s shirking and working actions, respectively. Let τ
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and Wτ denote the stopping time of the search stage (either due to progress to the next
stage or contract termination) and the associated promised utility to the manager. Because
the investors and the manager share the same discount rate (both 0) and ρ < δ, Lemma 3
still applies. That is, at = 1 for all t < τ , and there is no intermediate payment during the
search stage. The manager’s continuation utility in this stage thus can be written as:

Wt = E

[∫ τ

t

ρ(1− as)ds+Wτ

]
. (102)

By the martingale representation theorem for jump processes, given any investment strategy
x of the investors, there exists a Ft-predictable, integrable process βt such that

dWt = atβt(dNt − λ(1− F (xt))dt). (103)

Incentive compatibility of the search effort requires that λ(1 − F (xt))βt ≥ ρ. Incentive
compatibility of truthful reporting of θ requires that Kτ − Wτ = R(θτ ) if the contract
moves to the next stage, which implies βt = E[R(θt)|θt ≥ xt] = U(xt) by the property of a
martingale, where

U(x) ≡ E [R(θ)|θ ≥ x] =

∫ +∞

x

φγ2

2
(θ2 − x2)

(
κxκ

θκ+1

)
dθ =

φγ2x2

κ− 2
. (104)

Therefore, under an incentive compatible contract with investment policy xt,

dWt = U(xt)(dNt − λ(1− F (xt))dt) (105)

where λ(1−F (xt)) ≥ ρ. Then, Ito’s lemma implies the investors’ value function in the search
stage solves the HJB equation:

0 = max
x

−δ − λ
(
θmin

x

)κ
U(x)V ′1(W ) + λ

(
θmin

x

)κ
[V2(x)−W − V1(W )] (106)

subject to the IC constraint (17). Substituting U(x) from (104) and V2(x) from (42) into
the HJB equation and rearrange terms yields:

V1(W ) = max
x

(
φγκ

2(κ− 2)

)
x2 −

(
φγ2

κ− 2

)
x2V ′1(W )−W − δ

λ
xκθ−κmin. (107)

Suppose the IC constraint is slack, then the first order condition implies

φγ

κ− 2
[κ− 2γV ′1(W )]x =

δ

λ
κxκ−1θ−κmin. (108)

The solution is

x(W ) =

[(
1−

(
2γ

κ

)
V ′1(W )

)(
λφγθκmin

δ(κ− 2)

)] 1
κ−2

. (109)

42



If (17) is binding, then

λ

(
θmin

x

)κ
U(x) =

λθκmin

xκ

(
φγ2x2

κ− 2

)
= ρ, (110)

which yields the solution

x = x̄ ≡
[
λφγ2θκmin

ρ(κ− 2)

] 1
κ−2

. (111)

Substituting (72) into (70) implies that there exists W such that

x(W ) =

[(
1−

(
2γ

κ

)
V ′1((W )

)(
λφγθκmin

δ(κ− 2)

)] 1
κ−2

= x̄. (112)

That is, W solves

V ′1(W ) =
κ

2

(
1

γ
− δ

ρ

)
. (113)

Meanwhile, substituting x = θmin into (70) implies that there exists W such that

θmin = x(W ) =

[(
1−

(
2γ

κ

)
V ′1(W )

)(
λφγθκmin

δ(κ− 2)

)] 1
κ−2

. (114)

That is, W solves

V ′1(W ) =

(
1− δ(κ− 2)

λφγθ2min

)
κ

2γ
. (115)

The existence of both {W,W} requires that W > W , which is equivalent to

κ

2

(
1

γ
− δ

ρ

)
<

(
1− δ(κ− 2)

λφγθ2min

)
κ

2γ
(116)

or

λφθ2min >
ρ(κ− 2)

γ2

while (27) ensures V ′1(W ) > 0.

Proof of Proposition 5: When only a single target is available, by the martingale repre-
sentation theorem, there exists βt such that

dWt = βt(dNt − λdt). (117)

Incentive compatibility requires that λβt ≥ ρ, or βt ≥ ρ/λ. Applying Ito’s lemma on (117)
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implies that the investors’ value function solves the HJB equation

0 = max
β≥ρ/λ

−δ − λβV ′1(W ) + λ(K − β −W − V1(W )) (118)

subject to boundary conditions V1(0) = 0. Differentiating (118) with respect to β yields

−λ(V ′1(W ) + 1) ≤ 0. (119)

Therefore it is optimal to always set βt = ρ/λ, i.e., the IC constraint is always binding.
Replacing β in (118) with ρ/λ and use the definition V2 = K − ρ/λ yields

0 = −δ − ρV ′1(W ) + λ(V2 −W − V1(W )) (120)

as the HJB equation (45).

Proof of Proposition 6: Equations (4) and (23) imply the following comparative statics
regarding xFB and x(W ).

∂xFB

∂λ
> 0,

∂x(W )

∂λ
> 0, (121)

∂xFB

∂ρ
= 0,

∂x(W )

∂ρ
< 0, (122)

∂xFB

∂δ
< 0,

∂x(W )

∂δ
= 0. (123)

The first and third lines of these results imply that

∂

∂λ

(
x(W )

xFB

)
< 0, (124)

∂

∂δ

(
x(W )

xFB

)
> 0, (125)

given that x(W ) = θmin is a constant, while the second and the third lines imply that

∂

∂ρ

(
x(W )

xFB

)
< 0, (126)

∂

∂δ

(
x(W )

xFB

)
> 0. (127)
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